

# SIGNIFICANT COPPER, NICKEL AND GOLD RESULTS FROM KARRATHA DISTRICT

#### HIGHLIGHTS

- Diamond drilling at NRV06 successfully intersected zones over several metres of **disseminated to stringer** style Ni and Cu sulphide (pentlandite and chalcopyrite) in the Andover Intrusion (assays pending), with spot assaying using a pXRF of up to 0.95% Ni and 0.25% Cu.
- Drilling at the Morto Lago target delivered key intercepts (0.3 g/t Au cut-off) of:
  - 3 m @ 3.35 g/t Au from 9 m in KC329;
  - 4 m @ 6.74 g/t Au from 8 m (4 m composite) in KC365; and
  - 5 m @ 1.73 g/t Au from 15 m including 2 m @ 4.06 g/t Au from 18 m in KC369.
- Results from drilling at the Milburn FLEM anomaly, interpreted up dip of the Artemis Chapman Prospect<sup>1</sup>, include:
  - 13 m @ 0.39% Cu, 0.19% Ni and 0.013% Co from 92 m (KC354), including 3 m @ 0.59% Cu, 0.34% Ni and 0.021% Co from 94 m;
  - 18 m @ 0.34% Cu, 0.24% Ni and 0.015% Co from 67 m (KC355), including 6 m @ 0.46% Cu, 0.32% Ni and 0.016% Co from 67 m;
  - 5 m @ 0.65% Cu, 0.40% Ni and 0.02% Co from 12 m (KC356); and
  - 19 m @ 0.35% Cu, 0.18% Ni and 0.012% Co from 60 m (KC360), including 8 m @ 0.48% Cu, 0.24% Ni and 0.014% Co from 70 m.
- These promising assay results are reported from Novo's drilling program in the Karratha District, where Novo is exploring for high-grade Au (Cu-Co) adjacent to Artemis Resources Limited's ("Artemis") (ASX:ARV) Carlow Castle Au (Cu-Co) discovery ("Carlow Castle") and Ni-Cu-Co adjacent to Azure Minerals Limited's ("Azure") (ASX:AZS) Andover Ni-Cu-Co discovery ("Andover").
- Novo is currently conducting downhole EM ("DHEM") on Ni-Cu-Co targets at the Southcourt, NRV06, and Milburn Prospects.

Commenting on the precious and base metal results generated in the Karratha District, Mr. Mike Spreadborough, Novo's Executive Co-Chairman, Director, and acting Chief Executive Officer said,

"This set of assays from our widespread drill program in the Karratha District has generated exciting results. We are fortunate to control a dominant landholding in the Pilbara, which comprises a strong pipeline of exploration targets and we are committed to investing in the drill bit as we strive to deliver discovery success and build long-term shareholder value."

"The high-grade results from the Morto Lago area and positive results from the Milburn area provide us with a compelling platform to continue our aggressive approach to exploration in 2023. We await the next set of assays from 47k and 48K, Sullam, NRV06, Southcourt and Morto Lago North and will also complete downhole EM surveys which will generate the next set of drill targets."

<sup>1</sup> Refer to Artemis' public disclosure record

**VANCOUVER, BC** - **Novo Resources Corp.** (**"Novo"** or the **"Company"**) (TSX: NVO, NVO.WT & NVO.WT.A) (OTCQX: NSRPF) is pleased to provide an exploration update on the Company's drilling program in the Karratha District, located within Novo's 10,500 sq km Pilbara exploration portfolio (Figure 1).

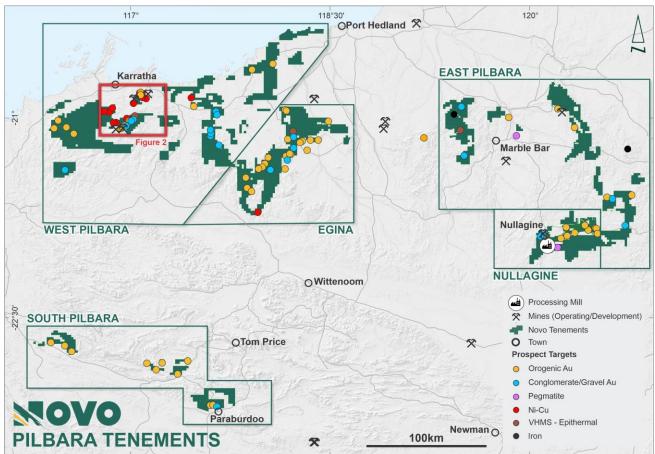



Figure 1: Novo's Pilbara tenements and project location.

A key focus of Novo's gold and battery metals exploration strategy<sup>2</sup> is the systematic and rapid progression of drilling advanced targets in the Karratha District, particularly within the Purdy's North area (Figure 2), located adjacent to Azure's Andover discovery and Artemis's Carlow Castle discovery.

Novo has completed a first-pass exploration drilling program in the Karratha District, focused on testing numerous prospects for structurally controlled high-grade Au (Cu-Co) mineralization, and magmatic Ni-Cu-Co mineralization in the Andover Intrusion and associated mafic-ultramafic intrusions. Results referred to in this news release are not necessarily representative of mineralization throughout the Purdy's North project.

101 RC drill holes (KC312 to 407) for 12,408 m and 3 diamond drill holes for 556.2 m (KD902 to 904) have been completed. Drilling tested the following key prospects:

- Au targets at Morto Lago, 47K and 48K; and
- Ni-Cu-Co targets at Southcourt, NRV06, Milburn and Sullam.

Diamond drilling successfully intersected zones over several metres of disseminated to stringer style Ni and Cu sulphides, in ultramafic rocks of the Andover Intrusion at NRV06, with assays pending. Portable XRF assaying (pXRF) indicated that pentlandite and chalcopyrite are present, with spot assays of up to **0.95% Ni** and **0.25% Cu**.

<sup>2</sup> Refer to the Company's news release dated <u>August 2, 2022</u>.

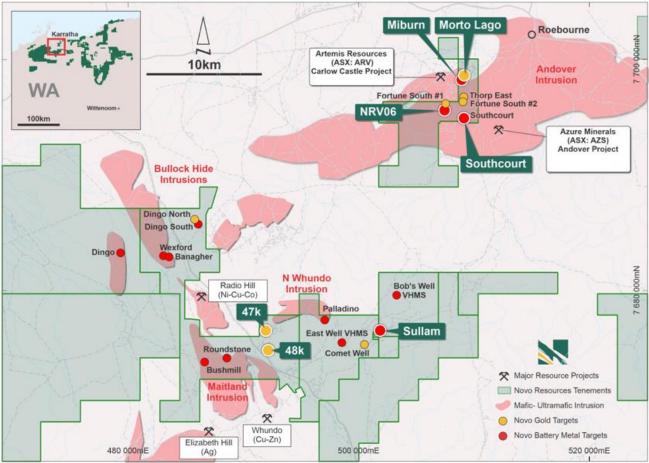



Figure 2: Prospect location at Purdy's North and the Maitland/Dingo intrusive areas<sup>3</sup>.



Figure 3: Hole KD902 at approximately 103.52 m, showing disseminated and stringer sulphides. Spot assays of sulphide with pXRF yielded 0.79% Ni and 0.21% Cu.

Drilling at Morto Lago (Figure 2) included sectional traverses at 160 m spacings and holes 40 m apart. Elsewhere, reconnaissance style drilling included single hole tests or a few sections with 1 to 3 drill holes. Nineteen drill holes have been cased with 40 mm poly pipe in order to conduct DHEM with 11 loops planned,

*<sup>3</sup> Refer to Artemis' and Azure's public disclosure records.* 

in order to test a number of targets for massive to sub-massive Ni sulphide bodies adjacent to holes already drilled. This high-priority geophysical survey is currently in progress.

Results have been received for drill holes up to KC381, with results pending for a number of areas including 47k and 48K, Sullam, NRV06 and parts of Southcourt and Morto Lago.

Results from the Morto Lago area include best intercepts (0.3 g/t Au cut-off) of:

- 3 m @ 3.35 g/t Au from 9 m KC329;
- 4 m @ 6.74 g/t Au from 8 m (4 m composite) in KC365; and
- 5 m @ 1.73 g/t Au from 15 m including 2 m @ 4.06 g/t Au from 18 m in KC369

The true width of these intercepts is unknown as the target is covered by clay overburden. Refer to **Table 1** in Appendix 1 below for a listing of drill results.

Results from the Milburn FLEM anomaly, interpreted to be the up dip of the Artemis Chapman Prospect<sup>1</sup>, include:

- 13 m @ 0.39% Cu, 0.19% Ni and 0.013% Co from 92 m (KC354), including 3 m @ 0.59% Cu, 0.34%
  Ni and 0.021% Co from 94 m;
- 18 m @ 0.34% Cu, 0.24% Ni and 0.015% Co from 67 m (KC355), including 6 m @ 0.46% Cu, 0.32%
  Ni and 0.016% Co from 67 m;
- 5 m @ 0.65% Cu, 0.40% Ni and 0.02% Co from 12 m (KC356); and
- 19 m @ 0.35% Cu, 0.18% Ni and 0.012% Co from 60 m (KC360), including 8 m @ 0.48% Cu, 0.24% Ni and 0.014% Co from 70 m.

These results are interpreted to be >80% true width. Refer to **Table 2 and 3** in Appendix below for a listing of significant drill results.

True width intersections may reduce for gold targets once geological setting is fully understood, however current widths for nickel-copper targets are predicted to be true widths.



Figure 4: RC drill rig at the Morto Lago Prospect, in the Karratha District.



Figure 5: Novo geologists logging diamond core at the NRV06 Prospect.

### ANALYTIC METHODOLOGY

#### Drill holes targeting gold

RC drilling was sampled as either 4 m composite samples using a spear, or if visual parameters such as percentage of quartz veins or sulphide mineralization, or alteration intensity were deemed to warrant, as 1 m cone splits directly off the drill rig. Any 4 m composite samples that contain > 0.1 g/t Au mineralization on receival of results were re-submitted as 1 m cone split samples. Thus, all samples containing gold mineralization in 4 m composites, or any intervals with significant signs of potential mineralization, were assayed as cone splits. All RC chips as 1 to 4 kg samples were sent to Intertek Genalysis ("Intertek") in Perth, Western Australia with the entire sample smart crushed to -3 mm (NVO02 prep code), with a 500 g split sample analyzed for gold using PhotonAssay<sup>™</sup> (PHXR/AU01). QAQC protocols included insertion of a certified blank approximately every 50 samples (2 per hundred 500g coarse blank CRMS) certified standards for PhotonAssay<sup>™</sup> Au at approximately every 50 samples and duplicate sampling (split of 4 m composite) at the rate of 4 per hundred. Further to this, Intertek inserts customized Chrysos certified standards at the rate of 2 per hundred.

#### **Drill holes targeting Ni-Cu-Co**

RC drilling was sampled as either 4 metre composite samples using a spear, or if visual parameters such as sulphide mineralization were deemed to warrant, as 1 m cone splits directly off the drill rig. All RC chips as 1 to 4 kg samples were sent to Intertek in Perth, Western Australia and were crushed and pulverized and assayed for Au, Pt and Pd by four acid digest and 50 g charge fire assay (FA50/MS) and for 48 multielement using four acid digest – MS finish (4A/MS). QAQC protocols included insertion of a certified blank approximately every 25 samples (4 per hundred, 2 of which are 500 g coarse blank CRMS and two of which are 60 g pulverised -80# CRMs), certified standards for Ni, Cu and Co approximately every 25 samples and duplicate sampling (split of 4 m composite) at the rate of 4 per hundred.

#### pXRF

The pXRF assay technique utilized a Niton XL5 handheld XRF machine. The Niton XL5 is calibrated daily, with 4 QAQC standards (fit for purpose including certified Ni, Cu and Co values) run concurrently, with an additional 2 standards checked per 100 readings and 4 QAQC standard assayed before the machine is shut down. pXRF is utilized as a preliminary exploration technique for base metals. Drill core samples are point analysed for 90 seconds using 4 machine filters. The pXRF is a spot reading device and has diminished precision due to grainsize effect, especially on rock samples where peak results represent a window of < 10 mm field of view. The pXRF usage on core as stated in this release, is not representative of the entire interval, rather representative of a small area of certain sulphide minerals or clusters of sulphide minerals and related wall rocks.

There were no limitations to the verification process and all relevant data was verified by a qualified person as defined in National Instrument 43-101 *Standards of Disclosure for Mineral Projects* ("**NI 43-101**") by reviewing analytical procedures undertaken by Intertek.

#### **QP STATEMENT**

Mr. Iain Groves (MAIG), is the qualified person, as defined under NI 43-101, responsible for, and having reviewed and approved, the technical information contained in this news release. Mr. Groves is Novo's Exploration Manger – West Pilbara.

#### **ABOUT NOVO**

Novo explores and develops its prospective land package covering approximately 10,500 square kilometres in the Pilbara region of Western Australia, including the Beatons Creek gold project, along with two joint ventures in the Bendigo region of Victoria, Australia. In addition to the Company's primary focus, Novo seeks to leverage its internal geological expertise to deliver value-accretive opportunities to its stakeholders. For more information, please contact Leo Karabelas at (416) 543-3120 or e-mail <u>leo@novoresources.com</u>. On Behalf of the Board of Directors,

#### Novo Resources Corp.

<u>"Michael Spreadborough"</u> Michael Spreadborough Executive Co-Chairman and Acting CEO

#### Forward-looking information

Some statements in this news release contain forward-looking information (within the meaning of Canadian securities legislation) including, without limitation, planned exploration activities across the Purdy's North project. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors include, without limitation, customary risks of the resource industry and the risk factors identified in Novo's management's discussion and analysis for the nine-month period ended September 30, 2022, which is available under Novo's profile on SEDAR at www.sedar.com. Forward-looking statements speak only as of the date those statements are made. Except as required by applicable law, Novo assumes no obligation to update or to publicly announce the results of any change to any forward-looking statement contained or incorporated by reference herein to reflect actual results, future events or developments, changes in assumptions or changes in other factors affecting the forward-looking statements. If Novo updates any forward-looking statement(s), no inference should be drawn that the Company will make additional updates with respect to those or other forward-looking statements.

## APPENDIX: Table 1: Karratha Area – RC and DD drilling data - hole locations.

| HOLE<br>ID     | COORDSYS             | EASTING  | NORTHING               | RL   | AZI<br>GRID | DIP        | ТҮРЕ | DEPTH     | LEASE                |
|----------------|----------------------|----------|------------------------|------|-------------|------------|------|-----------|----------------------|
| KC312          | MGA94_50             | 509119.5 | 7698400.2              | 24.0 | 180         | -55        | RC   | 80        | E47/1745             |
| KC313          | MGA94_50             | 509119.9 | 7698799.3              | 22.6 | 360         | -55        | RC   | 84        | E47/1745             |
| KC314          | MGA94_50             | 509120.0 | 7698807.8              | 22.5 | 180         | -55        | RC   | 36        | E47/1745             |
| KC315          | MGA94_50             | 509119.4 | 7698599.4              | 23.2 | 180         | -55        | RC   | 90        | E47/1745             |
| KC316          | MGA94_50             | 509123.2 | 7698639.4              | 22.9 | 180         | -55        | RC   | 118       | E47/1745             |
| KC317          | MGA94 50             | 509119.8 | 7698557.0              | 23.0 | 360         | -55        | RC   | 108       | E47/1745             |
| KC318          | MGA94_50             | 509120.1 | 7698519.5              | 22.8 | 360         | -55        | RC   | 115       | E47/1745             |
| KC319          | MGA94_50             | 509118.4 | 7698598.8              | 23.2 | 360         | -55        | RC   | 108       | E47/1745             |
| KC320          | MGA94_50             | 509118.1 | 7698681.8              | 22.6 | 360         | -55        | RC   | 80        | E47/1745             |
| KC321          | MGA94_50             | 509117.5 | 7698721.1              | 22.7 | 360         | -55        | RC   | 90        | E47/1745             |
| KC322          | MGA94_50             | 509118.4 | 7698762.0              | 22.7 | 360         | -55        | RC   | 72        | E47/1745             |
| KC323          | MGA94_50             | 509118.4 | 7698481.0              | 23.2 | 360         | -55        | RC   | 180       | E47/1745             |
| KC324          | MGA94_50             | 509117.9 | 7698439.9              | 23.3 | 360         | -55        | RC   | 84        | E47/1745             |
| KC325          | MGA94_50             | 509038.7 | 7698600.5              | 23.4 | 360         | -55        | RC   | 78        | E47/1745             |
| KC326          | MGA94_50             | 509038.5 | 7698560.5              | 23.7 | 360         | -55        | RC   | 108       | E47/1745             |
| KC327          | MGA94_50             | 509039.7 | 7698519.9              | 23.5 | 360         | -55        | RC   | 144       | E47/1745             |
| KC328          | MGA94 50             | 509279.5 | 7698720.0              | 22.1 | 360         | -55        | RC   | 84        | E47/1745             |
| KC329          | MGA94 50             | 509279.5 | 7698680.3              | 22.0 | 360         | -55        | RC   | 78        | E47/1745             |
| KC330          |                      | 509279.5 | 7698641.4              | 21.9 | 360         | -55        | RC   | 108       | E47/1745             |
| KC331          | MGA94 50             | 509279.4 | 7698597.8              | 21.9 | 360         | -55        | RC   | 162       | E47/1745             |
| KC332          | MGA94 50             | 509440.4 | 7698719.8              | 21.4 | 360         | -55        | RC   | 102       | E47/1745             |
| KC333          | MGA94 50             | 509277.1 | 7698561.2              | 22.0 | 360         | -55        | RC   | 102       | E47/1745             |
| KC334          | MGA94 50             | 509277.6 | 7698511.8              | 22.2 | 360         | -55        | RC   | 150       | E47/1745             |
| KC335          | MGA94 50             | 509440.2 | 7698680.0              | 21.5 | 360         | -55        | RC   | 170       | E47/1745             |
| KC336          | MGA94 50             | 509440.3 | 7698762.6              | 21.3 | 360         | -55        | RC   | 90        | E47/1745             |
| KC337          | MGA94 50             | 509440.6 | 7698801.3              | 21.3 | 360         | -55        | RC   | 95        | E47/1745             |
| KC338          | MGA94_50             | 509439.3 | 7698841.4              | 20.8 | 360         | -55        | RC   | 84        | E47/1745             |
| KC339          | MGA94_50             | 509440.1 | 7698638.5              | 21.3 | 360         | -55        | RC   | 78        | E47/1745             |
| KC340          | MGA94_50             | 509440.1 | 7698599.9              | 21.3 | 360         | -55        | RC   | 78        | E47/1745             |
| KC341          | MGA94 50             | 509441.0 | 7698558.7              | 21.3 | 360         | -55        | RC   | 96        | E47/1745             |
| KC342          | MGA94 50             | 509038.7 | 7698481.8              | 23.4 | 360         | -55        | RC   | 120       | E47/1745             |
| KC343          | MGA94 50             | 508781.3 | 7698826.9              | 24.7 | 320         | -55        | RC   | 96        | E47/1745             |
| KC344          | MGA94_50             | 508799.6 | 7698921.0              | 23.9 | 360         | -55        | RC   | 96        | E47/1745             |
| KC345          | MGA94_50             | 508800.4 | 7698881.6              | 24.2 | 360         | -55        | RC   | 126       | E47/1745             |
| KC346          | MGA94_50             | 508801.2 | 7698841.2              | 24.6 | 360         | -55        | RC   | 138       | E47/1745             |
| KC347          | MGA94 50             | 508959.7 | 7698961.8              | 23.3 | 360         | -55        | RC   | 84        | E47/1745             |
| KC348          | MGA94_50             | 508960.1 | 7698920.9              | 23.2 | 360         | -55        | RC   | 126       | E47/1745             |
| KC348          | MGA94_50             | 508958.0 | 7698878.7              | 23.2 | 360         | -55        | RC   | 120       | E47/1745             |
| KC350          | MGA94_50             | 508951.0 | 7698921.1              | 23.2 | 180         | -55        | RC   | 48        | E47/1745             |
| KC351          | MGA94_50             | 508983.1 | 7698406.2              | 24.6 | 70          | -55        | RC   | 102       | E47/1745             |
| KC351          | MGA94_50             | 508944.2 | 7698390.5              | 24.9 | 70          | -55        | RC   | 102       | E47/1745             |
| KC352          | MGA94_50             | 508544.2 | 7698351.2              | 24.5 | 70          | -55        | RC   | 163       | E47/1745             |
| KC354          | MGA94_50             | 508861.4 | 7698292.5              | 28.3 | 70          | -55        | RC   | 162       | E47/1745             |
| KC354<br>KC355 | MGA94_50<br>MGA94_50 | 508861.4 | 7698292.5              | 28.3 | 70          | -55<br>-55 | RC   | 182       | E47/1745<br>E47/1745 |
| KC355<br>KC356 | MGA94_50<br>MGA94_50 | 508861.7 | 7698184.7              | 27.1 | 70          | -55        | RC   | 60        | E47/1745<br>E47/1745 |
| KC356<br>KC357 | MGA94_50<br>MGA94_50 | 508971.3 | 7698213.4              | 25.0 | 70          | -55        | RC   | 132       | E47/1745<br>E47/1745 |
| KC357<br>KC358 | MGA94_50<br>MGA94_50 | 509003.4 | 7698223.6              | 24.0 | 70          | -55        | RC   | 132       | E47/1745<br>E47/1745 |
| KC358<br>KC359 | MGA94_50<br>MGA94_50 | 509038.1 | 7698059.8              | 25.5 | 70          | -55        | RC   | 96        | E47/1745<br>E47/1745 |
| KC359<br>KC360 | MGA94_50<br>MGA94_50 | 508883.9 | 7698081.3              | 24.9 | 70          | -55<br>-55 | RC   | 96<br>114 | E47/1745<br>E47/1745 |
|                | _                    |          |                        |      |             |            |      |           |                      |
| KC361<br>KC362 | MGA94_50<br>MGA94_50 | 509018.4 | 7697876.8<br>7697807.5 | 24.9 | 145         | -55<br>-55 | RC   | 120       | E47/1745             |
|                | _                    | 509062.3 |                        | 24.4 | 145<br>225  |            | RC   | 78        | E47/1745             |
| KC363          | MGA94_50             | 509017.7 | 7697878.1              | 24.9 | 325         | -55        | RC   | 174       | E47/1745             |
| KC364          | MGA94_50             | 508991.4 | 7698042.7              | 25.3 | 70          | -55        | RC   | 126       | E47/1745             |
| KC365          | MGA94_50             | 508798.2 | 7698963.4              | 23.3 | 360         | -55        | RC   | 108       | E47/1745             |
| KC366          | MGA94_50             | 508996.0 | 7698915.8              | 23.2 | 270         | -55        | RC   | 150       | E47/1745             |
| KC367          | MGA94_50             | 509120.8 | 7698960.1              | 22.2 | 360         | -55        | RC   | 96        | E47/1745             |
| KC368          | MGA94_50             | 509119.9 | 7698922.1              | 22.6 | 360         | -55        | RC   | 90        | E47/1745             |
| KC369          | MGA94_50             | 509120.0 | 7698880.0              | 22.6 | 360         | -55        | RC   | 72        | E47/1745             |
| KC370          | MGA94_50             | 509120.0 | 7698840.1              | 22.5 | 360         | -55        | RC   | 84        | E47/1745             |

| KC371  | MGA94 50     | 508361.4 | 7694962.7 | 52.9 | 180 | -55 | RC   | 186   | E47/1745 |
|--------|--------------|----------|-----------|------|-----|-----|------|-------|----------|
| KC372  |              | 508874.2 | 7695032.6 | 47.8 | 270 | -55 | RC   | 138   | E47/1745 |
| KC373  | <br>MGA94_50 | 508805.7 | 7694810.4 | 51.3 | 110 | -55 | RC   | 180   | E47/1745 |
| KC374  | MGA94 50     | 486654.2 | 7673820.8 | 69.3 | 239 | -60 | RC   | 126   | E47/3443 |
| KC375  | MGA94 50     | 486730.6 | 7673778.0 | 69.4 | 239 | -60 | RC   | 150   | E47/3443 |
| KC376  | <br>MGA94_50 | 486680.0 | 7673933.0 | 69.2 | 240 | -55 | RC   | 144   | E47/3443 |
| KC377  | MGA94_50     | 509294.7 | 7695000.2 | 49.6 | 175 | -50 | RC   | 270   | E47/1745 |
| KC378  | <br>MGA94_50 | 507460.4 | 7695044.8 | 52.5 | 345 | -55 | RC   | 150   | E47/1745 |
| KC379  | MGA94_50     | 507480.0 | 7694997.6 | 53.6 | 345 | -55 | RC   | 258   | E47/1745 |
| KC380  | MGA94_50     | 507526.5 | 7694972.9 | 53.3 | 195 | -55 | RC   | 228   | E47/1745 |
| KC381  | MGA94_50     | 509218.5 | 7695030.3 | 51.5 | 209 | -50 | RC   | 324   | E47/1745 |
| KC382  | MGA94_50     | 508796.2 | 7694801.9 | 51.6 | 180 | -55 | RC   | 336   | E47/1745 |
| KC383  | MGA94_50     | 508565.1 | 7694948.0 | 51.7 | 150 | -55 | RC   | 336   | E47/1745 |
| KC384  | MGA94_50     | 491903.6 | 7676161.3 | 87.1 | 325 | -55 | RC   | 60    | E47/3443 |
| KC385  | MGA94_50     | 491915.1 | 7676143.8 | 87.3 | 325 | -55 | RC   | 186   | E47/3443 |
| KC386  | MGA94_50     | 491930.3 | 7676121.7 | 87.2 | 325 | -55 | RC   | 138   | E47/3443 |
| KC387  | MGA94_50     | 491941.2 | 7676094.9 | 86.7 | 325 | -55 | RC   | 198   | E47/3443 |
| KC388  | MGA94_50     | 491795.7 | 7676315.6 | 92.9 | 60  | -55 | RC   | 252   | E47/3443 |
| KC389  | MGA94_50     | 491973.0 | 7676711.9 | 96.9 | 155 | -55 | RC   | 60    | E47/3443 |
| KC390  | MGA94_50     | 492019.2 | 7676656.1 | 96.9 | 330 | -55 | RC   | 198   | E47/3443 |
| KC391  | MGA94_50     | 492002.5 | 7676679.4 | 96.8 | 330 | -50 | RC   | 78    | E47/3443 |
| KC392  | MGA94_50     | 491407.2 | 7676346.4 | 97.2 | 150 | -50 | RC   | 78    | E47/3443 |
| KC393  | MGA94_50     | 492064.8 | 7674733.7 | 87.1 | 325 | -55 | RC   | 78    | E47/3443 |
| KC394  | MGA94_50     | 492075.2 | 7674695.5 | 87.7 | 325 | -55 | RC   | 150   | E47/3443 |
| KC395  | MGA94_50     | 491990.6 | 7674696.4 | 90.6 | 330 | -55 | RC   | 78    | E47/3443 |
| KC396  | MGA94_50     | 501718.9 | 7676317.2 | 87.7 | 300 | -55 | RC   | 66    | P47/1847 |
| KC397  | MGA94_50     | 501717.8 | 7676317.8 | 87.7 | 300 | -70 | RC   | 318   | P47/1847 |
| KC398  | MGA94_50     | 501665.2 | 7676190.9 | 81.4 | 300 | -70 | RC   | 318   | P47/1847 |
| KD901A | MGA94_50     | 507391.7 | 7695360.2 | 76.1 | 298 | -50 | RC   | 3     | E47/1745 |
| KD901  | MGA94_50     | 507391.7 | 7695360.2 | 76.1 | 298 | -50 | RC   | 122   | E47/1745 |
| KD902  | MGA94_50     | 507550.0 | 7695342.2 | 73.3 | 170 | -50 | RCDD | 316   | E47/1745 |
| KC399  | MGA94_50     | 509280.6 | 7698960.2 | 22.3 | 360 | -55 | RC   | 78    | E47/1745 |
| KC400  | MGA94_50     | 509279.9 | 7698922.3 | 21.6 | 360 | -55 | RC   | 78    | E47/1745 |
| KC401  | MGA94_50     | 509280.6 | 7698879.2 | 21.3 | 360 | -55 | RC   | 78    | E47/1745 |
| KC402  | MGA94_50     | 509280.8 | 7698838.3 | 22.0 | 360 | -55 | RC   | 78    | E47/1745 |
| KC403  | MGA94_50     | 509280.8 | 7698801.2 | 22.0 | 360 | -55 | RC   | 78    | E47/1745 |
| KC404  | MGA94_50     | 509280.2 | 7698759.5 | 22.1 | 360 | -55 | RC   | 42    | E47/1745 |
| KD903  | MGA94_50     | 507533.4 | 7695464.8 | 59.4 | 170 | -50 | RCDD | 198.1 | E47/1745 |
| KC405  | MGA94_50     | 509760.4 | 7698883.0 | 21.2 | 360 | -55 | RC   | 72    | E47/1745 |
| KC406  | MGA94_50     | 509760.3 | 7698839.6 | 21.0 | 360 | -55 | RC   | 78    | E47/1745 |
| KC407  | MGA94_50     | 509763.2 | 7698800.1 | 20.1 | 360 | -55 | RC   | 78    | E47/1745 |
| KD904  | MGA94_50     | 507517.8 | 7695523.1 | 57.9 | 315 | -50 | RCDD | 242.1 | E47/1745 |

# Table 2: Karratha Area – Significant RC Au assay results >0.1 g/t Au, carried up to 2 m internal dilution

| Hole Id | From m | To m | method | Au ppm | Co ppm | Cu ppm | Ni ppm | Zn ppm | Width | gram metres |
|---------|--------|------|--------|--------|--------|--------|--------|--------|-------|-------------|
| KC317   | 28     | 33   | CONE   | 0.242  |        |        |        |        | 5     | 1           |
| KC317   | 65     | 66   | CONE   | 0.28   |        |        |        |        | 1     | 0           |
| KC318   | 76     | 80   | COMP   | 0.73   |        |        |        |        | 4     | 3           |
| KC321   | 66     | 70   | COMP   | 0.1    |        |        |        |        | 4     | 0           |
| KC323   | 5      | 6    | CONE   | 1.01   |        |        |        |        | 1     | 1           |
| KC323   | 18     | 22   | COMP   | 0.17   |        |        |        |        | 4     | 1           |
| KC323   | 42     | 46   | COMP   | 0.37   |        |        |        |        | 4     | 1           |
| KC323   | 164    | 165  | CONE   | 0.27   |        |        |        |        | 1     | 0           |
| KC324   | 27     | 28   | CONE   | 0.14   |        |        |        |        | 1     | 0           |
| KC327   | 15     | 16   | CONE   | 0.31   |        |        |        |        | 1     | 0           |
| KC329   | 9      | 13   | CONE   | 2.56   |        |        |        |        | 4     | 10          |
| KC329   | 17     | 18   | CONE   | 0.16   |        |        |        |        | 1     | 0           |
| KC330   | 72     | 75   | CONE   | 0.253  |        |        |        |        | 3     | 1           |
| KC331   | 82     | 83   | CONE   | 0.12   |        |        |        |        | 1     | 0           |
| KC331   | 95     | 97   | CONE   | 0.67   |        |        |        |        | 2     | 1           |
| KC331   | 146    | 148  | CONE   | 0.425  |        |        |        |        | 2     | 1           |
| KC333   | 7      | 8    | CONE   | 1.39   |        |        |        |        | 1     | 1           |

| КС333 | 31  | 32  | CONE | 0.27  | ĺ   | l    | ĺ    |      | 1 | 0  |
|-------|-----|-----|------|-------|-----|------|------|------|---|----|
| KC333 | 39  | 41  | CONE | 0.205 |     |      |      |      | 2 | 0  |
| KC333 | 59  | 61  | CONE | 2     |     |      |      |      | 2 | 4  |
| KC333 | 74  | 78  | CONE | 0.453 |     |      |      |      | 4 | 2  |
| KC335 | 90  | 93  | CONE | 0.433 |     |      |      |      | 3 | 1  |
| KC335 | 147 | 150 | CONE | 0.2   |     |      |      |      | 3 | 1  |
| KC336 | 40  | 41  | CONE | 0.201 | 17  | 18   | 10   | 95   | 1 | 0  |
| KC338 | 40  | 41  | COMP | 0.127 | 17  | 10   | 10   | 33   | 3 | 0  |
| KC338 | 48  | 56  | COMP | 0.537 |     |      |      |      | 8 | 4  |
| KC340 | 72  |     | COMP |       |     |      |      |      |   |    |
|       |     | 76  |      | 0.185 |     |      |      |      | 4 | 1  |
| KC342 | 22  | 27  | CONE | 0.176 |     |      |      |      | 5 | 1  |
| KC342 | 52  | 56  | COMP | 0.147 |     |      |      |      | 4 | 1  |
| KC342 | 68  | 72  | CONE | 0.524 |     |      |      |      | 4 | 2  |
| KC343 | 54  | 58  | COMP | 0.291 |     |      | -    |      | 4 | 1  |
| KC344 | 72  | 73  | CONE | 0.104 | 21  | 2127 | 8    | 60   | 1 | 0  |
| KC344 | 74  | 75  | CONE | 0.103 | 15  | 1544 | 10   | 51   | 1 | 0  |
| KC344 | 86  | 90  | CONE | 0.717 | 25  | 1992 | 12   | 112  | 4 | 3  |
| KC345 | 90  | 91  | CONE | 0.183 | 34  | 6761 | 6    | 272  | 1 | 0  |
| KC345 | 94  | 95  | CONE | 0.118 | 20  | 2442 | 5    | 132  | 1 | 0  |
| KC345 | 97  | 105 | CONE | 0.133 | 19  | 2167 | 9    | 103  | 8 | 1  |
| KC345 | 115 | 120 | CONE | 0.263 | 35  | 1747 | 29   | 45   | 5 | 1  |
| KC347 | 59  | 60  | CONE | 0.42  | 47  | 1367 | 162  | 133  | 1 | 0  |
| KC348 | 50  | 54  | COMP | 0.26  |     |      |      |      | 4 | 1  |
| KC349 | 82  | 84  | CONE | 0.415 | 9   | 2867 | 7    | 103  | 2 | 1  |
| KC349 | 134 | 135 | CONE | 0.11  | 25  | 151  | 5    | 10   | 1 | 0  |
| KC349 | 136 | 137 | CONE | 0.128 | 148 | 914  | 24   | 27   | 1 | 0  |
| KC349 | 144 | 145 | CONE | 0.119 | 11  | 142  | 6    | 36   | 1 | 0  |
| KC351 | 23  | 24  | CONE | 0.108 | 50  | 4760 | 286  | 52   | 1 | 0  |
| KC351 | 30  | 31  | CONE | 0.137 | 26  | 1745 | 95   | 43   | 1 | 0  |
| KC351 | 53  | 54  | CONE | 0.251 | 45  | 88   | 174  | 110  | 1 | 0  |
| KC352 | 44  | 45  | CONE | 0.114 | 27  | 3237 | 191  | 47   | 1 | 0  |
| KC352 | 96  | 100 | COMP | 0.102 | 51  | 88   | 128  | 110  | 4 | 0  |
| KC354 | 73  | 74  | CONE | 0.222 | 61  | 1345 | 1028 | 83   | 1 | 0  |
| KC354 | 105 | 106 | CONE | 0.265 | 147 | 5232 | 1617 | 87   | 1 | 0  |
| KC354 | 129 | 130 | CONE | 0.399 | 14  | 57   | 6    | 51   | 1 | 0  |
| KC358 | 12  | 15  | CONE | 0.103 | 158 | 2310 | 1942 | 105  | 3 | 0  |
| KC358 | 74  | 75  | CONE | 0.123 | 31  | 804  | 51   | 84   | 1 | 0  |
| KC363 | 20  | 24  | COMP | 0.164 | 325 | 8757 | 0    | 2388 | 4 | 1  |
| KC364 | 34  | 36  | COMP | 0.251 | 254 | 1113 | 2153 | 94   | 2 | 1  |
| KC365 | 8   | 16  | COMP | 3.463 |     |      |      |      | 8 | 28 |
| KC365 | 42  | 49  | CONE | 0.101 |     |      |      |      | 7 | 1  |
| KC365 | 55  | 62  | CONE | 0.128 |     |      |      |      | 7 | 1  |
| KC365 | 68  | 73  | CONE | 0.126 |     |      |      |      | 5 | 1  |
| KC366 | 0   | 4   | COMP | 0.795 |     |      |      |      | 4 | 3  |
| KC367 | 18  | 22  | COMP | 0.305 |     |      |      |      | 4 | 1  |
| KC367 | 42  | 43  | CONE | 0.255 |     |      |      |      | 1 | 0  |
| KC368 | 58  | 59  | CONE | 0.105 |     |      |      |      | 1 | 0  |
| KC369 | 8   | 12  | COMP | 0.683 |     |      |      |      | 4 | 3  |
| KC369 | 15  | 20  | CONE | 1.735 |     |      |      |      | 5 | 9  |
| KC369 | 30  | 31  | CONE | 0.23  |     |      |      |      | 1 | 0  |
|       | 50  | 51  | CONL | 5.25  |     |      |      |      |   | 5  |
| KC369 | 49  | 50  | CONE | 0.106 |     |      |      |      | 1 | 0  |

# Table 3: Karratha Area – Significant RC Au assay results >1000 ppm Cu carried up to 2 m internal dilution

| Hole Id | From m | To m | method | Cu ppm | Ni ppm | Co ppm | Au ppm | Ag ppm | Width |
|---------|--------|------|--------|--------|--------|--------|--------|--------|-------|
| KC360   | 60     | 79   | CONE   | 3489   | 1829   | 121    | 0.016  | 2.1    | 19    |
| KC355   | 67     | 87   | CONE   | 3264   | 2278   | 142    | 0.019  | 2.0    | 20    |
| KC358   | 5      | 32   | CONE   | 2224   | 1914   | 133    | 0.035  | 1.1    | 27    |
| KC354   | 92     | 109  | CONE   | 3322   | 1542   | 110    | 0.034  | 1.8    | 17    |
| KC356   | 4      | 17   | COMP   | 3476   | 2213   | 129    | 0.014  | 1.9    | 13    |

| KC359 | 0   | 16  | COMP | 2744  | 1486 | 105 | 0.03  | 1.0  | 16 |
|-------|-----|-----|------|-------|------|-----|-------|------|----|
| KC363 | 20  | 24  | COMP | 8757  | 0    | 325 | 0.164 | 9.7  | 4  |
| KC364 | 62  | 72  | CONE | 2161  | 2023 | 120 | 0.014 | 1.1  | 10 |
| KC351 | 21  | 31  | CONE | 2115  | 165  | 33  | 0.056 | 1.4  | 10 |
| KC364 | 30  | 46  | СОМР | 1311  | 1646 | 140 | 0.053 | 0.7  | 16 |
| KC345 | 97  | 105 | CONE | 2167  | 9    | 19  | 0.133 | 2.4  | 8  |
| KC358 | 45  | 50  | CONE | 3071  | 2375 | 115 | 0.021 | 1.4  | 5  |
| KC345 | 90  | 95  | CONE | 2810  | 5    | 33  | 0.089 | 4.5  | 5  |
| KC352 | 42  | 46  | CONE | 2724  | 155  | 27  | 0.065 | 2.2  | 4  |
| KC344 | 70  | 76  | CONE | 1719  | 10   | 20  | 0.073 | 1.6  | 6  |
| KC353 | 126 | 127 | CONE | 10229 | 185  | 46  | 0.081 | 7.5  | 1  |
| KC353 | 104 | 109 | CONE | 2003  | 1403 | 114 | 0.017 | 0.7  | 5  |
| KC345 | 115 | 120 | CONE | 1747  | 29   | 35  | 0.263 | 1.6  | 5  |
| KC344 | 88  | 89  | CONE | 7088  | 15   | 34  | 0.999 | 4.0  | 1  |
| KC360 | 52  | 56  | COMP | 1739  | 903  | 82  | 0.004 | 1.0  | 4  |
| KC361 | 10  | 15  | CONE | 1328  | 2095 | 146 | 0.006 | 0.2  | 5  |
| KC349 | 82  | 84  | CONE | 2867  | 7    | 9   | 0.415 | 3.0  | 2  |
| KC352 | 37  | 38  | CONE | 2421  | 1513 | 142 | 0.012 | 1.0  | 1  |
| KC353 | 94  | 95  | CONE | 1673  | 1260 | 70  | 0.01  | 0.7  | 1  |
| KC359 | 37  | 38  | CONE | 1431  | 844  | 65  | 0.008 | 0.6  | 1  |
| KC347 | 59  | 60  | CONE | 1367  | 162  | 47  | 0.42  | 12.5 | 1  |
| KC354 | 73  | 74  | CONE | 1345  | 1028 | 61  | 0.222 | 0.4  | 1  |
| KC352 | 73  | 74  | CONE | 1330  | 209  | 60  | 0.031 | 1.2  | 1  |
| KC353 | 91  | 92  | CONE | 1226  | 1400 | 113 | 0.007 | 0.5  | 1  |
| KC363 | 51  | 52  | CONE | 1106  | 1098 | 111 | 0.006 | 0.8  | 1  |
| KC353 | 89  | 90  | CONE | 1106  | 310  | 53  | 0.01  | 0.4  | 1  |
| KC345 | 84  | 85  | CONE | 1100  | 17   | 18  | 0.025 | 1.0  | 1  |
| KC352 | 19  | 20  | CONE | 1048  | 1035 | 62  | 0.013 | 0.1  | 1  |