12 June 2023

BECHER DRILLING CONTINUES TO INTERCEPT SIGNIFICANT GOLD MINERALISATION

HIGHLIGHTS

- Ongoing aircore drilling ("AC") at Becher continues to deliver significant intercepts (> 2 g * m in tenor), with key recent results including:
- 39 m @ $0.25 \mathrm{~g} / \mathrm{t}$ Au from 81 m including 3 m @ $0.41 \mathrm{~g} / \mathrm{t}$ Au from 108 m in F1843

○ 18 m @ $0.38 \mathrm{~g} / \mathrm{t}$ Au from 21 m including $9 \mathrm{~m} @ 0.56 \mathrm{~g} / \mathrm{t}$ Au from 30 m also in F1843
○ 12 m @ $0.43 \mathrm{~g} / \mathrm{t}$ Au from 57 m including $6 \mathrm{~m} @ 0.66 \mathrm{~g} / \mathrm{t}$ Au from 60 m also in F1843
○ 30 m @ $0.2 \mathrm{~g} / \mathrm{t}$ Au from 3 m including $3 \mathrm{~m} @ 0.38 \mathrm{~g} / \mathrm{t}$ Au from 12 m in F1924

- 13 m @ $0.35 \mathrm{~g} / \mathrm{t}$ Au from 36 m including 10 m @ $0.42 \mathrm{~g} / \mathrm{t}$ Au from 39 m also in F1924

○ 9 m @ $0.39 \mathrm{~g} / \mathrm{t}$ Au from 54m including 6 m @ $0.45 \mathrm{~g} / \mathrm{t}$ Au from 54 m in F1838

- 6 m @ $0.36 \mathrm{~g} / \mathrm{t}$ Au from 48 m including 3 m @ $0.6 \mathrm{~g} / \mathrm{t}$ Au from 51 m in F1881
- Becher is Novo's flagship project located in the northern sector of the Egina Gold Camp and 28 km along trend from De Grey Mining Limited's (ASX:DEG) 10.6 Moz Au (JORC 2012) ${ }^{1}$ Mallina Gold Project.
- Novo has completed over 50,000 m of AC drilling to date at Becher with significant gold and multi-element assay results generated, defining a large priority area of mineralisation across some 5 sq km . The exciting results from this program have confirmed Novo's plans to extend the drilling program.
- Both geological setting and pathfinder multielement assays compare favourably to the adjacent Mallina Gold Project mineralisation, with planning for deeper drilling underway.
- 720 AC holes for over $20,000 \mathrm{~m}$ have been completed in 2023 , with majority on 320 m spaced infill drill lines at Heckmair and some on closer spaced lines at Irvine. Assays are pending for 80 holes.
- Recent drilling, focused on gold anomalies previously identified in the Irvine Shear corridor in proximity to the Heckmair intrusion, continues to identify intercepts across a significant strike length.
- The Nunyerry North Prospect, located in the southern section of the Egina Gold Camp, is the next target that Novo is progressing as part of its aggressive Pilbara exploration program.
- A high-grade soil anomaly has previously been identified at Nunyerry North and ethnographic and archaeological heritage clearances have been completed, allowing final drill program design and planning for the Company's maiden RC drill program to commence in H2 2023.

Commenting on the drill program, Novo Executive Co-Chairman and Acting CEO Mike Spreadborough said, "We are very excited by the results generated from our large ongoing aircore drill program at Becher. When completing this type of program, this is the tenor and scale of results which validate our exploration team's hypothesis of the prospectivity of Becher and support our program ahead of commencing deeper drilling. Importantly, Becher is displaying all the right geological characteristics to compare favourably to the mineralisation at the adjacent Mallina Gold Project and we are excited to be advancing our drilling program.
"We are in the right area for major gold deposits and have a standout exploration team focused on discovering the next major gold deposit in the Pilbara. The Becher project has the potential to realise significant shareholder value within the months ahead, shaping up to be a very exciting period for the Company and our shareholders."

VANCOUVER, BC - Novo Resources Corp. ("Novo" or the "Company") (TSX: NVO, NVO.WT \& NVO.WT.A) (OTCQX: NSRPF) is pleased to report new and significant results and that it will continue the aircore ("AC") drilling program at Becher. Results referred to in this news release are not necessarily representative of mineralisation throughout the Egina Gold Camp.

The continued significant gold and multielement assay results from over $50,000 \mathrm{~m}$ drilling to date has identified multiple targets including a large priority area of anomalism across some 5 sq km at Becher and provided the Company with a high-level of confidence to continue the drilling program. Both geological setting and pathfinder multielement assays compare favourably to the adjacent Mallina Gold Project mineralisation with planning for deeper drilling underway.

In addition, at the Nunyerry North Prospect, located in the south of the Egina Gold Camp, where a high-grade soil anomaly has previously been identified, ethnographic and archaeological heritage clearances have been completed, allowing the Company to commence final drill program design and planning for a maiden RC drill program to commence in H 22023.

First pass RC drilling at Bellary Dome was recently completed, testing three distinct targets at Catia, Catia East and Edney's Find. Sporadic intervals of gold mineralisation with a peak interval of $2 \mathrm{~m} @ 2.72 \mathrm{~g} / \mathrm{t}$ Au from 8 m at Catia have been returned. The project as a whole is now under review, with no further drilling planned at this time.

BECHER PROJECT

The Becher Project covers an area approximately 20 sq km in the north of the 100% Novo owned E47/3673 exploration tenement. The area is characterised by shallow cover overlying the highly prospective and underexplored Mallina Basin. Becher is situated adjacent to De Grey's (ASX:DEG) 10.6 Moz Au (JORC 2012) ${ }^{1}$ Mallina Gold Project and 2.5 km south of their Withnell South discovery (Figure 1).

Novo commenced it's 2023 aircore AC program at Becher in mid-April 2023 and to date has completed 720 holes for over 20,000 m, with over 80 holes pending assay results.

Figure 1-Egina Gold Camp tenure showing the Becher and Nunyerry North Projects and the priority Becher prospects.

Becher Drilling Update

The 2023 20,000 m AC program testing multiple, high-priority structural and intrusion-hosted gold targets, has been focussed at the Heckmair and Irvine Prospects following return of significant gold and pathfinder results.

Recent drilling has returned significant intercepts ($>2 \mathrm{~g}^{*} \mathrm{~m}$ in tenor) including:
○ 39 m @ $0.25 \mathrm{~g} / \mathrm{t}$ Au from 81 m in F1843, including (likely drilled down dip):

- 3 m@ $0.32 \mathrm{~g} / \mathrm{t}$ Au from 81 m
- 3 m @ 0.41 g/t Au from 108 m

○ 18 m @ $0.38 \mathrm{~g} / \mathrm{t}$ Au from 21 m including 9 m @ $0.56 \mathrm{~g} / \mathrm{t}$ Au from 30 m also in F1843

- 12 m @ $0.43 \mathrm{~g} / \mathrm{t}$ Au from 57 m including 6 m @ $0.66 \mathrm{~g} / \mathrm{t}$ Au from 60 m also in F 1843

○ 30 m @ $0.2 \mathrm{~g} / \mathrm{t}$ Au from 3 m including 3 m @ $0.31 \mathrm{~g} / \mathrm{t} A u$ from 6 m and $3 \mathrm{~m} @ 0.38 \mathrm{~g} / \mathrm{t} A u$ from 12 m in F1924

- 13 m @ $0.35 \mathrm{~g} / \mathrm{t}$ Au from 36 m including 10 m @ $0.42 \mathrm{~g} / \mathrm{t}$ Au from 39 m also in F1924
- 9 m @ $0.39 \mathrm{~g} / \mathrm{t}$ Au from 54 m including 6 m @ $0.45 \mathrm{~g} / \mathrm{t}$ Au from 54 m in F1838

○ 6 m @ 0.36 g/t Au from 48 m including 3 m @ 0.6 g/t Au from 51 m in F1881

Refer to Tables 1 and 2 in the Appendix below for a complete list of assay results. True widths from AC drilling cannot be estimated at this time.

Recent AC drilling has been concentrated around gold anomalies previously identified at the Irvine Prospect and impressively, continues to identify intercepts across a significant strike length. Drilling at Irvine targeted closer-spaced infill lines, as well as direct infill drilling along previously drilled lines, in order to better understand controls on structures and associated mineralisation.

Drilling to date in 2023 has been completed predominantly at the eastern Heckmair and Irvine Prospects (Figure 2) and has now moved to the Whillans Shear.

Results recently received confirm grade continuity at the Irvine Prospect, with continuous downhole anomalism associated with quartz veins and shearing within the sediments of the Constantine Sandstone Unit. This drilling, combined with the RC program completed in Q4 2022, indicate variations in dip direction for mineralised structures across the Irvine prospect, with holes intersecting mineralisation dipping both to the northwest and to the southeast.

Drilling to the immediate south of the main Irvine zone also identified anomalous gold mineralisation associated with quartz veining dipping steeply and sub-vertically towards the southeast approximately 500 m southeast from the main Irvine trend (Figure 3).

Next Steps

Given the success of the current $20,000 \mathrm{~m}$ program at Becher, $A C$ drilling will continue. The AC program will infill anomalous zones based on both gold and pathfinder geochemistry with current drilling focused on the east Whillans prospect. Following this round of drilling, the rig will then move on to complete regional reconnaissance lines across other structural corridors such as Bonatti. Several areas are under consideration for deeper RC drilling follow up in H2 2023.

NUNYERRY NORTH DRILL UPDATE (E47/2973 - NOVO 70\% / CREASY GROUP 30\%)

The Nunyerry North prospect is located within the Egina Gold Camp and approximately 80 km south of Becher (Figure 1) and is the next target that Novo is progressing as part of its Pilbara exploration program.

Figure 2 - Becher Project with main prospects, AC drilling progress to date and planned AC drilling over interpreted geology.

Figure 3 - Close up of the Heckmair-Irvine priority area with significant gold intercepts from 2022/2023 AC drilling programs, green callouts from recent results.

Ethnographic and archeological heritage clearances have recently been completed for the Nunyerry North prospect allowing final drill program design and planning for Novo's maiden drill program to commence in H2 2023.

Figure 4 - Nunyerry North high-grade shallow-dipping quartz vein-related gold mineralisation.

BELLARY DOME DRILLING PROGRAM RESULTS

Commencement of a reverse circulation ("RC") drill program focussed on the orogenic gold target at the Catia Prospect ("Catia") and gold in conglomerate at the Edney's Find Prospect ("Edney's Find") at the Bellary Dome Project ("Bellary"), South Pilbara, Western Australia, was announced in early 2023 ².

This drilling was recently completed, testing three distinct targets at Catia, Catia East and Edney's Find:

- 20 holes for $1,768 \mathrm{~m}$ were drilled at the Catia main prospect where high-grade gold results were returned from rock chip sampling of shear-related quartz vein swarms in 2021, including peak results of 556 ppm gold and 117 ppm gold.
- 8 holes for 616 m were drilled at Catia East, where soil sampling completed in 2021 by Novo highlighted a significant soil anomaly 700 m east-southeast of Catia.
- 6 holes for 312 m were drilled at the Edney's Find Conglomerate target where peak gold values from trench rock chip samples in 2020 returned 36.4 ppm Au and numerous nuggets were located at surface by previous explorers.

Refer to Tables 3 and 4 in the Appendix below for a complete list of assay results. Drilling was based on detailed mapping and targeted to be perpendicular to mineralisation as much as practical. In some areas, the geology is complex and due to the exploratory nature of the work, the true width of mineralisation cannot yet be precisely determined.

Several zones of quartz veins were intersected in most drill holes, however peak assay results (using $0.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ cut-off) of $2 \mathrm{~m} @ 2.72 \mathrm{~g} / \mathrm{t}$ Au from 8 m (BCOO2) and $1 \mathrm{~m} @ 1.29 \mathrm{~g} / \mathrm{t}$ Au from 12 m (BCOO3) were returned from Catia and no anomalous gold was intersected at Catia East. It is interpreted that the high-grade shallow dipping quartz vein-related gold mineralisation at Catia is restricted to the near surface along the main Catia Shear,

[^0]with erratic gold distribution. Vein sets at depth and the steep NNE dipping Catia Shear Zone appear to be unmineralised.

Drilling at Edney's Find intersected channelised conglomerate with up to 5\% sulphide, on a major unconformity overlying basement rocks. The conglomerate channel is interpreted to be up to 100 m wide and trends WNW with zones of significant "buckshot" (round) pyrite. A peak result of 1 m @ $2.3 \mathrm{~g} / \mathrm{t}$ Au was returned from the basal conglomerate contact. The Edney's Find target is open to the W and SW.

Only sporadic intervals of gold mineralisation have been returned during the RC drill program at Bellary Dome. The project as a whole is now under review, with no further drilling planned at this time.

ANALYTICAL METHODOLOGY

Analytical methodology - Becher AC Drilling

AC drilling is utilised as a first pass technique testing for gold mineralisation and anomalous pathfinder geochemistry in basement rocks under cover. The drilling methodology is rapid and low cost, with a low impact footprint, enabling large systematic programs to be completed in a cost effective and timely manner.

One metre AC drill samples are collected from the drill rig through a cyclone and placed on the ground in piles for geological quantitative and qualitative logging. These piles are then speared as three-meter composites into a 500-gram Chrysos ${ }^{\text {TM }}$ PhotonAssay jar. Some of the end of hole intervals are shorter than three meters depending on final hole depths. Jars are dispatched weekly to Intertek Genalysis ("Intertek") in Perth, Western Australia and analysed for gold using Chrysos ${ }^{\text {TM }}$ PhotonAssay (PHXR/AU01).

QAQC procedures for the program include insertion of a certified blank approximately every 25 samples (4 per hundred), a Chrysos ${ }^{\text {TM }}$ PhotonAssay certified standard approximately every 50 samples (2 per 100) and duplicate sampling (split of 3 m composite) at the rate of 4 per hundred. In addition, Intertek inserts Chrysos ${ }^{\text {TM }}$ PhotonAssay certified standards at the rate of 2 per hundred.

Analytical methodology - Bellary Dome RC Drilling

RC drilling allows for deeper testing of anomalies delineated by aircore drilling, and other geological direct targeting methods such as surface mapping and sampling, where bedrock is exposed at surface.

RC drilling was sampled as either 4 m composite samples using a spear, or if visual parameters such as percentage of quartz veins or sulphide mineralisation or alteration intensity were deemed to warrant, as 1 m cone splits directly off the drill rig.

All RC chip samples were sent to Intertek in Perth, Western Australia and were crushed and pulverised and assayed for Au by four acid digest and 50 g charge fire assay FA50/MS. QAQC protocols included insertion of a certified blank approximately every 25 samples (4 per hundred, 2 of which are 500 g coarse black CRMS and two of which are 60 g pulverised -80\# CRMs), certified standards for Au approximately every 25 samples and duplicate sampling (split of 4 m composite) at the rate of 4 per hundred.

Multi-elements were assayed using a handheld pXRF on -0.9 mm powder collected from the sieved chips every 1 m . The pXRF assay technique utilised a Niton XL5 handheld XRF machine calibrated daily, with 4 QAQC standards (fit for purpose including certified As, Cu and Sb values) run concurrently, with an additional 2 standards checked per 100 readings and 4 QAQC standard assayed before the machine is shut down. Drill powders are point analysed for 90 seconds using 4 machine filters.

There were no limitations to the verification process and all relevant data was verified by a qualified person as defined in National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101") by reviewing analytical procedures undertaken by Intertek.

QP STATEMENT

Mr. Iain Groves (MAIG), is the qualified person, as defined under NI 43-101, responsible for, and having reviewed and approved the technical information contained in this news release other than information concerning De Grey's Mallina Gold Project. Mr. Groves is Novo’s Exploration Manger - West Pilbara.

Abstract

ABOUT NOVO Novo explores and develops its prospective land package covering approximately 10,500 square kilometres in the Pilbara region of Western Australia, along with the 22 square kilometre Belltopper Project in the Bendigo Tectonic Zone of Victoria, Australia. In addition to the Company's primary focus, Novo seeks to leverage its internal geological expertise to deliver value-accretive opportunities to its stakeholders.

For more information, please contact Michael Spreadborough at +61-419-329-687 or mike.spreadborough@novoresources.com, or Leo Karabelas at +1-416-543-3120 or leo@ novoresources.com.

On Behalf of the Board of Directors,

Novo Resources Corp.

"Michael Spreadborough"

Michael Spreadborough
Executive Co-Chairman and Acting CEO

Forward-looking information

Some statements in this news release contain forward-looking information (within the meaning of Canadian securities legislation) including, without limitation, that the Company's maiden RC drill program at Nunyerry North will commence in H2 2023, that several areas in the Egina Gold Camp are under consideration for deeper RC drilling in H 2 2023, and that the Bellary Dome project is now under review. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors include, without limitation, customary risks of the resource industry and the risk factors identified in Novo's annual information form for the year ended December 31, 2022, which is available under Novo's profile on SEDAR at www.sedar.com. Forward-looking statements speak only as of the date those statements are made. Except as required by applicable law, Novo assumes no obligation to update or to publicly announce the results of any change to any forward-looking statement contained or incorporated by reference herein to reflect actual results, future events or developments, changes in assumptions or changes in other factors affecting the forward-looking statements. If Novo updates any forward-looking statement(s), no inference should be drawn that the Company will make additional updates with respect to those or other forward-looking statements.

APPENDIX

Table 1 Becher Project - Aircore drill hole locations in MGA_94 zone 50

HOLE_ID	Easting (m)	Northing (m)	RL (m)	Azimuth	Dip	Depth
F1763	621350	7684518	59.9	147	-60	24
F1764	621336	7684539	60.0	147	-60	24
F1765	621323	7684560	59.9	147	-60	28
F1766	621309	7684581	59.8	147	-60	30
F1767	621295	7684602	59.6	147	-60	30
F1768	621281	7684623	59.6	147	-60	42
F1769	621268	7684643	59.4	147	-60	30
F1770	621254	7684664	59.3	147	-60	24
F1771	621240	7684685	59.3	147	-60	30
F1772	621227	7684706	59.2	147	-60	24
F1773	621213	7684727	59.2	147	-60	30
F1774	621199	7684748	59.1	147	-60	24
F1775	617841	7684485	59.5	180	-60	24
F1776	617841	7684510	59.3	180	-60	24
F1777	617841	7684535	59.1	180	-60	7
F1778	617841	7684560	59.0	180	-60	9
F1779	617841	7684585	58.9	180	-60	9
F1780	617841	7684610	58.7	180	-60	7
F1781	617841	7684635	58.6	180	-60	7
F1782	617841	7684660	58.4	180	-60	12
F1783	617841	7684685	58.4	180	-60	7
F1784	617841	7684710	58.3	180	-60	7
F1785	617841	7684735	58.2	180	-60	7
F1786	617841	7684760	58.1	180	-60	7
F1787	617841	7684785	58.0	180	-60	7
F1788	617841	7684810	57.9	180	-60	9.3
F1789	617841	7684835	57.9	180	-60	7
F1790	617841	7684860	57.8	180	-60	7
F1791	617841	7684885	57.8	180	-60	11
F1792	617841	7684910	57.8	180	-60	7
F1793	617841	7684935	57.8	180	-60	11
F1794	617841	7684960	57.7	180	-60	7
F1795	617841	7684985	57.8	180	-60	7
F1796	617841	7685010	57.7	180	-60	7
F1797	617841	7685035	57.8	180	-60	17
F1798	617841	7685060	57.8	180	-60	13
F1799	617841	7685085	57.6	180	-60	13
F1800	617841	7685110	57.6	180	-60	24
F1801	617841	7685135	57.6	180	-60	25
F1802	617841	7685160	57.6	180	-60	8
F1803	617841	7685185	57.6	180	-60	11
F1804	617841	7685210	57.5	180	-60	13
F1805	617841	7685235	57.5	180	-60	13
F1806	617841	7685260	57.6	180	-60	19
F1807	617841	7685285	57.6	180	-60	17
F1808	617841	7685310	57.5	180	-60	25
F1809	617841	7685335	57.4	180	-60	19
F1810	617841	7685360	57.3	180	-60	31
F1811	617841	7685385	57.2	180	-60	29
F1812	617841	7685410	57.2	180	-60	25
F1813	617841	7685435	57.2	180	-60	17
F1814	617841	7685460	57.2	180	-60	22
F1815	617841	7685485	57.2	180	-60	13

F1816	617841	7685510	57.2	180	-60	13
F1817	617841	7685535	57.1	180	-60	19
F1818	617841	7685560	57.1	180	-60	15
F1819	617841	7685585	57.1	180	-60	37
F1820	617841	7685610	57.1	180	-60	13
F1821	617841	7685635	57.2	180	-60	13
F1822	617841	7685660	57.2	180	-60	19
F1823	617841	7685685	57.1	180	-60	13
F1824	617841	7685710	57.3	180	-60	19
F1825	617841	7685735	57.6	180	-60	19
F1826	617841	7685760	57.4	180	-60	25
F1827	617841	7685785	57.4	180	-60	27
F1828	617841	7685810	57.3	180	-60	19
F1829	618481	7684660	57.4	180	-60	12
F1830	618481	7684685	57.4	180	-60	10
F1831	618481	7684710	57.5	180	-60	31
F1832	618481	7684735	57.4	180	-60	19
F1833	618481	7684760	57.3	180	-60	27
F1834	618481	7684785	57.2	180	-60	24
F1835	618481	7684810	57.0	180	-60	19
F1836	618481	7684835	57.0	180	-60	15
F1837	618481	7684860	57.0	180	-60	19
F1838	621112	7684292	65.0	331	-60	97
F1839	621181	7684185	64.6	326	-60	91
F1840	620696	7684345	69.8	326	-60	97
F1841	620721	7684318	70.8	325	-60	103
F1842	620736	7684289	69.1	326	-60	73
F1843	620754	7684257	69.2	329	-60	127
F1844	620782	7684212	67.4	327	-60	73
F1845	620800	7684190	67.0	325	-60	91
F1846	620802	7683597	60.3	326	-60	127
F1847	620750	7683616	60.3	55	-60	97
F1848	620729	7683602	60.2	55	-60	91
F1849	620708	7683588	60.2	59	-60	97
F1850	620687	7683575	60.1	58	-60	97
F1851	620666	7683561	60.2	57	-60	97
F1852	620913	7684309	70.1	327	-60	42
F1853	620926	7684288	67.9	327	-60	36
F1854	620940	7684267	66.3	327	-60	15
F1855	620954	7684246	65.5	327	-60	30
F1856	620968	7684225	65.1	327	-60	30
F1857	620981	7684204	64.7	327	-60	39
F1858	620995	7684183	64.6	327	-60	41
F1859	621009	7684162	64.4	327	-60	42
F1860	621202	7684449	61.2	327	-60	36
F1861	621216	7684428	61.3	327	-60	24
F1862	621230	7684407	61.4	327	-60	31
F1863	621243	7684386	61.5	327	-60	42
F1864	621258	7684365	61.6	327	-60	24
F1865	621271	7684344	61.8	327	-60	30
F1866	621284	7684323	62.7	327	-60	30
F1867	621348	7684335	61.6	327	-60	42
F1868	621362	7684314	61.8	327	-60	42
F1869	621376	7684292	62.2	327	-60	36
F1870	620762	7683953	61.8	327	-60	20
F1871	620776	7683932	61.5	327	-60	19
F1872	620789	7683911	61.4	327	-60	25
F1873	620803	7683890	61.2	327	-60	26

F1874	620817	7683869	61.0	327	-60	34
F1875	620831	7683848	60.9	327	-60	26
F1876	620844	7683827	60.7	327	-60	24
F1877	620858	7683806	60.6	327	-60	36
F1878	620872	7683785	60.5	327	-60	60
F1879	620885	7683764	60.5	327	-60	61
F1880	620899	7683743	60.5	327	-60	60
F1881	620913	7683723	60.5	327	-60	60
F1882	620926	7683702	60.5	327	-60	61
F1883	620940	7683681	60.5	327	-60	82
F1884	620453	7683840	59.8	327	-60	16
F1885	620467	7683819	59.8	327	-60	15
F1886	620481	7683798	59.8	327	-60	29
F1887	620494	7683777	59.7	327	-60	24
F1888	620508	7683756	59.8	327	-60	25
F1889	620522	7683735	59.7	327	-60	25
F1890	620535	7683714	59.8	327	-60	24
F1891	620549	7683694	60.0	327	-60	19
F1892	620563	7683673	60.0	327	-60	25
F1893	620577	7683652	60.0	327	-60	24
F1894	620590	7683631	60.0	327	-60	17
F1895	620604	7683610	60.0	327	-60	19
F1896	620618	7683589	60.1	327	-60	36
F1897	620631	7683568	60.1	327	-60	36
F1898	620645	7683547	60.2	327	-60	13
F1899	620659	7683526	60.3	327	-60	13
F1900	620673	7683505	60.3	327	-60	25
F1901	620278	7683815	59.6	327	-60	10
F1902	620292	7683794	59.6	327	-60	9
F1903	620306	7683773	59.6	327	-60	13
F1904	620319	7683752	59.6	327	-60	7
F1905	620333	7683731	59.6	327	-60	12
F1906	620347	7683710	59.5	327	-60	10
F1907	620361	7683689	59.7	327	-60	17
F1908	620374	7683669	59.7	327	-60	21
F1909	620388	7683648	59.7	327	-60	19
F1910	620402	7683627	59.7	327	-60	29
F1911	620415	7683606	59.7	327	-60	28
F1912	620429	7683585	59.7	327	-60	19
F1913	620443	7683564	59.9	327	-60	19
F1914	620456	7683543	59.9	327	-60	25
F1915	620470	7683522	59.9	327	-60	19
F1916	620484	7683501	60.0	327	-60	31
F1917	620498	7683480	60.0	327	-60	24
F1918	620511	7683459	60.1	327	-60	30
F1919	620525	7683439	60.3	327	-60	25
F1920	620539	7683418	60.4	327	-60	19
F1921	620552	7683397	60.8	327	-60	19
F1922	620566	7683376	60.8	327	-60	19
F1923	620580	7683355	60.8	327	-60	25
F1924	620120	7684057	58.9	327	-60	49
F1925	620134	7684036	59.0	327	-60	49
F1926	620147	7684015	59.1	327	-60	55
F1927	620162	7683995	59.3	327	-60	49
F1928	620175	7683974	59.5	327	-60	55
F1929	620188	7683953	59.5	327	-60	49
F1930	620202	7683932	59.6	327	-60	49
F1931	618481	7684635	57.4	180	-60	11

F1932	618481	7684885	56.9	180	-60	22
F1933	618481	7684910	57.0	180	-60	23
F1934	618481	7684935	56.9	180	-60	23
F1935	618481	7684960	56.9	180	-60	23
F1936	618481	7684985	56.9	180	-60	24
F1937	618481	7685010	56.9	180	-60	19
F1938	618481	7685035	57.0	180	-60	18
F1939	618481	7685060	56.9	180	-60	17
F1940	618481	7685085	56.9	180	-60	19
F1941	618481	7685110	57.0	180	-60	19
F1942	618481	7685135	56.9	180	-60	25
F1943	618481	7685160	57.0	180	-60	19
F1944	618481	7685185	56.9	180	-60	25
F1945	618481	7685210	56.7	180	-60	25
F1946	618481	7685235	56.7	180	-60	24
F1947	618481	7685260	56.7	180	-60	20
F1948	618481	7685285	56.7	180	-60	24
F1949	618481	7685310	56.7	180	-60	24
F1950	618481	7685335	56.8	180	-60	24
F1951	618481	7685360	56.6	180	-60	24
F1952	618481	7685385	56.6	180	-60	24
F1953	618481	7685410	56.5	180	-60	24
F1954	618481	7685435	56.6	180	-60	24
F1955	618470	7684622	57.4	90	-60	19
F1956	618445	7684622	57.5	90	-60	19
F1957	618420	7684621	57.6	90	-60	13
F1958	618395	7684620	57.5	90	-60	13
F1959	618370	7684618	57.6	90	-60	13
F1960	618345	7684616	57.7	90	-60	15
F1961	618320	7684613	57.8	90	-60	13
F1962	618295	7684610	58.0	90	-60	36
F1963	618270	7684610	58.1	90	-60	24
F1964	618245	7684608	58.3	90	-60	19
F1965	618220	7684607	58.6	90	-60	19
F1966	618195	7684608	58.6	90	-60	19
F1967	618145	7684610	58.7	90	-60	24
F1968	618120	7684613	58.8	90	-60	16
F1969	618095	7684619	58.6	90	-60	13
F1970	618070	7684621	58.7	90	-60	13
F1971	618045	7684612	58.7	90	-60	19
F1972	618020	7684611	58.6	90	-60	10
F1973	617995	7684614	58.5	90	-60	13
F1974	617970	7684615	58.5	90	-60	11
F1975	617945	7684614	58.5	90	-60	7
F1976	617920	7684613	58.6	90	-60	11
F1977	617895	7684609	58.6	90	-60	13
F1978	617870	7684606	58.6	90	-60	13
F1979	617820	7684600	58.9	90	-60	13
F1980	617795	7684599	59.1	90	-60	19
F1981	617770	7684601	59.5	90	-60	13
F1982	617745	7684606	59.9	90	-60	13
F1983	617720	7684611	60.3	90	-60	19
F1984	617695	7684612	61.2	90	-60	30
F1985	617670	7684609	61.5	90	-60	18
F1986	617645	7684606	59.6	90	-60	24
F1987	617620	7684602	58.9	90	-60	23
F1988	617595	7684600	58.9	90	-60	22
F1989	617570	7684599	58.8	90	-60	24

F1990	617545	7684598	58.8	90	-60	28
F1991	617521	7684498	58.9	180	-60	55
F1992	617521	7684523	58.9	180	-60	67
F1993	617495	7684610	58.8	90	-60	24
F1994	617470	7684610	58.9	90	-60	24
F1995	617445	7684610	58.9	90	-60	24
F1996	617420	7684610	59.0	90	-60	24
F1997	617395	7684610	59.1	90	-60	24
F1998	617370	7684610	59.3	90	-60	24
F1999	617345	7684610	59.5	90	-60	24
F2000	617489	7685185	58.2	90	-60	24
F2001	617464	7685185	58.2	90	-60	37
F2002	617439	7685185	58.4	90	-60	37
F2003	617414	7685185	58.8	90	-60	31
F2004	617389	7685185	59.0	90	-60	25
F2005	617364	7685185	59.4	90	-60	24
F2006	617339	7685185	59.1	90	-60	25
F2007	617314	7685185	58.9	90	-60	25
F2008	617289	7685185	58.8	90	-60	25
F2009	617264	7685185	58.8	90	-60	25
F2010	617239	7685184	58.9	90	-60	24
F2011	617201	7684885	59.1	180	-60	24
F2012	617201	7684910	59.1	180	-60	24
F2013	617201	7684935	59.1	180	-60	24
F2014	617201	7684960	59.0	180	-60	30
F2015	617201	7684985	59.0	180	-60	30
F2016	617201	7685010	58.9	180	-60	36
F2017	617201	7685035	59.0	180	-60	24
F2018	617201	7685060	58.9	180	-60	30
F2019	617201	7685085	58.9	180	-60	31
F2020	617201	7685110	58.9	180	-60	24
F2021	617201	7685135	58.9	180	-60	24
F2022	617201	7685160	58.8	180	-60	30
F2023	617201	7685185	58.8	180	-60	24
F2024	617201	7685210	58.8	180	-60	24
F2025	617201	7685235	58.8	180	-60	31
F2026	617201	7685260	58.8	180	-60	25
F2027	617201	7685285	58.9	180	-60	24
F2028	617201	7685310	59.0	180	-60	24
F2029	617201	7685335	59.1	180	-60	24
F2030	617201	7685360	59.2	180	-60	25
F2031	621898	7684847	58.8	327	-60	49
F2032	621912	7684826	58.6	327	-60	55
F2033	621925	7684805	58.7	327	-60	49
F2034	621939	7684784	58.7	327	-60	49
F2035	621953	7684763	58.8	327	-60	55
F2036	621966	7684742	59.1	327	-60	49
F2037	621980	7684721	59.1	327	-60	49
F2038	621994	7684700	59.2	327	-60	49
F2039	622008	7684679	58.8	327	-60	49
F2040	622021	7684659	58.7	327	-60	55
F2041	621651	7685223	58.5	147	-60	24
F2042	621638	7685244	58.4	147	-60	25
F2043	621624	7685265	58.4	147	-60	13
F2044	621610	7685285	58.4	147	-60	19
F2045	621596	7685306	58.4	147	-60	19
F2046	621583	7685327	58.3	147	-60	19
F2047	621570	7685354	58.3	147	-60	31

F2048	621556	7685375	58.5	147	-60	25
F2049	621543	7685396	58.6	147	-60	19
F2050	621529	7685417	59.1	147	-60	25
F2051	621516	7685438	59.3	147	-60	31
F2052	621503	7685459	59.8	147	-60	25
F2053	621489	7685480	60.2	147	-60	25
F2054	621476	7685502	59.9	147	-60	25
F2055	621462	7685523	59.5	147	-60	25
F2056	621449	7685544	59.6	147	-60	25
F2057	621436	7685565	60.0	147	-60	25
F2058	621422	7685586	60.2	147	-60	25
F2059	621409	7685607	60.3	147	-60	25

Table 2 Becher Project - Aircore drilling intercepts >0.1 g/t Au with up to 2 m internal dilution

HOLE_ID	From (m)	To (m)	Interval (m)	Au (g/t)
F1818	9	12	3	0.12
F1825	3	6	3	0.12
F1838	27	30	3	0.10
F1838	54	63	9	0.39
F1838	72	75	3	0.12
F1840	90	93	3	0.10
F1841	90	103	13	0.15
F1842	48	51	3	0.22
F1842	63	72	9	0.13
F1843	3	6	3	0.11
F1843	15	18	3	0.31
F1843	21	39	18	0.38
F1843	42	45	3	0.20
F1843	57	69	12	0.43
F1843	72	78	6	0.25
F1843	81	120	39	0.25
F1844	6	9	3	0.27
F1844	12	15	3	0.16
F1844	27	30	3	0.11
F1844	48	54	6	0.28
F1845	39	48	9	0.21
F1845	57	60	3	0.11
F1852	27	30	3	0.23
F1852	33	36	3	0.11
F1854	6	15	9	0.15
F1855	18	21	3	0.12
F1856	15	21	6	0.18
F1871	12	15	3	0.20
F1879	15	18	3	0.12
F1880	12	18	6	0.17
F1880	21	27	6	0.23
F1881	48	54	6	0.36
F1882	9	12	3	0.29
F1893	18	21	3	0.16
F1900	18	24	6	0.17
F1924	3	33	30	0.20
F1924	36	49	13	0.35
F1926	39	45	6	0.22
F1928	51	55	4	0.15
F1936	3	9	6	0.15
F1936	12	15	3	0.2
F1937	9	12	3	0.11

F1995	0	3	3	0.13
F2036	3	6	3	0.17
F2046	18	19	1	0.15
F2047	30	31	1	0.13

Table 3 - RC drill hole locations Bellary Dome Project in MGA_2020 zone 50

Hole ID	Prospect	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth	DEPTH (m)
BC001	CATIA	563523.0	7439158.7	422	-50	359	102
BC002	CATIA	563480.2	7439219.2	430	-53	352	84
BC003	CATIA	563479.0	7439199.0	432	-55	352	84
BC004	CATIA	563477.4	7439177.1	432	-55	360	120
BC005	CATIA	563443.4	7439213.0	436	-50	3	84
BC006	CATIA	563439.5	7439197.6	439	-54	357	114
BC007	CATIA	563403.9	7439232.8	436	-54	360	102
BC008	CATIA	563433.7	7439278.4	426	-90	160	30
BC009	CATIA	563433.9	7439279.0	426	-83	20	120
BC010	CATIA	563440.7	7439276.5	426	-63	178	96
BC011	CATIA	563443.2	7439285.2	424	-65	357	102
BC012	CATIA	563324.9	7439279.9	425	-55	33	90
BC013	CATIA	563367.4	7439350.4	419	-54	33	71
BC014	CATIA	563484.6	7439263.7	423	-65	348	102
BC015	CATIA	563521.0	7439254.0	420	-45	184	120
BC016	CATIA	563560.0	7439198.7	417	-50	185	82
BC017	CATIA	563559.6	7439141.3	416	-50	0	86
BC018	CATIA E	563670.3	7439083.6	411	-55	209	78
BC019	CATIA E	563702.9	7439131.1	412	-55	51	17
BC020	CATIA E	563696.3	7439130.6	412	-54	205	84
BC021	CATIA E	564095.0	7438995.3	413	-58	37	96
BC022	CATIA E	564067.4	7438959.1	412	-60	33	78
BC023	CATIA E	564044.9	7438923.9	412	-60	44	72
BC024	CATIA E	564016.1	7438881.8	411	-54	206	78
BC025	CATIA E	563932.5	7439026.9	413	-55	42	72
BC026	CATIA E	563879.6	7438958.3	411	-55	207	54
BC027	CATIA E	563896.8	7438989.0	411	-55	205	78
BC028	EDNEYS	566167.8	7437931.6	402	-55	35	40
BC029	EDNEYS	566224.2	7437895.7	402	-55	25	46
BC030	EDNEYS	566213.0	7437880.5	401	-55	35	52
BC031	EDNEYS	566287.5	7437845.7	402	-55	35	58
BC032	EDNEYS	566267.0	7437810.4	400	-55	35	58
BC033	EDNEYS	566316.2	7437757.9	399	-55	60	58
BC034	CATIA E	564099.3	7439006.7	414	-60	213	88

Table 4 - Bellary Dome Project - RC drilling intercepts $>0.1 \mathrm{~g} / \mathrm{t}$ Au Bellary Dome Project

Hole ID	Prospect	From (m)	Interval (m)	Au g/t	Intercept
BC002	Catia	2	1	0.202	$1 \mathrm{~m} @ 0.20 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BC002	Catia	7	1	0.867	
BC002	Catia	8	1	4.569	
BC002	Catia	24	1	0.159	$1 \mathrm{~m} @ 0.16 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BC003	Catia	0	1	0.393	$1 \mathrm{~m} @ 0.39 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BC003	Catia	12	1	1.289	$1 \mathrm{~m} @ 1.29 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BC005	Catia	4	1	0.136	$3 \mathrm{~m} @ 0.21 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BC005	Catia	5	1	0.313	

BC005	Catia	6	1	0.174	
BC008	Catia	6	1	1.845	$1 \mathrm{~m} @ 1.85 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BC014	Catia	3	1	0.147	$1 \mathrm{~m} @ 0.15 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BC014	Catia	60	1	0.132	$1 \mathrm{~m} @ 0.13 \mathrm{~g} / \mathrm{t}$ Au
BC015	Catia	22	1	0.622	3 m @ $0.29 \mathrm{~g} / \mathrm{t}$ Au
BC015	Catia	23	1	0.05	
BC015	Catia	24	1	0.19	
BC029	Edney's	3	1	0.285	2 m @ $0.28 \mathrm{~g} / \mathrm{t}$ Au
BC029	Edney's	4	1	0.271	
BC029	Edney's	37	1	0.15	3 m @ $0.96 \mathrm{~g} / \mathrm{t}$ Au
BC029	Edney's	38	1	0.438	
BC029	Edney's	39	1	2.3	
BC030	Edney's	20	4	0.131	$4 \mathrm{~m} @ 0.13 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BC030	Edney's	32	4	0.101	$4 \mathrm{~m} @ 0.10 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BC031	Edney's	0	4	0.107	$4 \mathrm{~m} @ 0.11 \mathrm{~g} / \mathrm{t} \mathrm{Au}$

[^0]: 2 Refer to the Company's news release dated March 22, 2023.

