

EXPLORATION TO EXPAND INTO THE EAST PILBARA

HIGHLIGHTS

- Novo Resources signs a Determination Wide Aboriginal Heritage Protection Agreement with the **Nyamal Aboriginal Corporation** covering 1,500 sq km of tenure in the East Pilbara.
- The Agreement paves the way for Novo to commence further exploration activities at the priority **Bamboo and Miralga Projects**.
- A heritage site avoidance survey has been completed to facilitate **drill testing of the Bamboo gold trend**, including orogenic and IRG targets.
- Surface mapping and sampling has commenced at the **Miralga Project**, following up on porphyry style and intrusion related targets generated from historical data and reconnaissance work in 2021.
- Rock chip samples collected by Novo at Gully Washer (Miralga Project) associated with a mineralised breccia and vein array returned peak results of 14.8 g/t Au, 10,083 g/t Ag, 3.8% Cu, 28.3% Pb and 3.6% Zn¹.
- The footwall of the mineralised gossanous outcrop at **Gully Washer** returned **four** > 2,000 g/t Ag rock chip samples along 100 m of strike¹.

Field photographs from exploration programs at Bamboo (left) and Miralga (right)

Commenting on the latest exploration programs in the East Pilbara, Novo Executive Co-Chairman and Acting CEO Mike Spreadborough said "We are pleased to have reached an agreement with the Nyamal Aboriginal Corporation and thank them for their ongoing support of Novo and our exploration endeavours on their land. The terms of this agreement attest to the strong relationship Novo has with the Nyamal People.

Novo looks forward to advancing its exploration in the region, as we continue key activities across the priority Bamboo and Miralga Projects."

Australian Office Level 3, 46 Ventnor Avenue, West Perth WA 6005 +61 8 6400 6100

¹ Refer to Appendix 1 for assay results.

VANCOUVER, BC - Novo Resources Corp. (Novo or the Company) (ASX: NVO) (TSX: NVO)

(OTCQX: NSRPF) is pleased to advise that a Determination Wide Aboriginal Heritage Protection Agreement (the **Agreement**) has been signed between Novo and the Nyamal Aboriginal Corporation (**NAC**). The execution of this Agreement streamlines the interactions between Novo and the Nyamal People and confirms Novo's commitment to open, honest and transparent dealings with the Traditional Owners of the Pilbara Region.

The Agreement with NAC covers a large part of the East Pilbara District and allows Novo to conduct non ground disturbing surface works including mapping and surface geochemistry, specifically targeting the priority **Bamboo** and **Miralga Projects**. A cultural heritage site avoidance survey took place at **Bamboo** on 6 and 7 August 2024 to enable drill testing, with a final report expected later in the month.

The Agreement also provides for compensation payments for the benefit of the Traditional Owners which are customary and in line with normal commercial terms for similar agreements of this nature.

EAST PILBARA DISTRICT

The East Pilbara District encompasses Novo tenements around the townships of Marble Bar and Nullagine (Figure 1) and fall within the Nyamal and Palyku Native Title Determination areas.

Approximately 1,500 sq km of prospective and under explored tenure around Marble Bar is currently being advanced by mapping, geochemical surveys and geophysical/remote sensing interpretation. The large landholding comprises orogenic and intrusion-related gold targets, including porphyry / intermediate sulphidation epithermal-style targets at Gully Washer and Shady Camp West on the Miralga Project. A new target style now includes a series of sanukitoid-like intrusions which are evident along a major structural corridor trending along the Nullagine and Bamboo / Strattons projects. Unusual wire gold has been identified in proximity to one of these intrusions at Strattons.

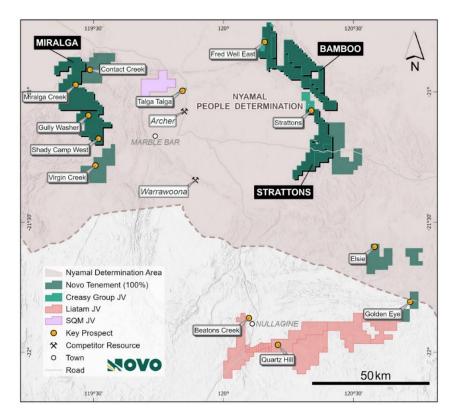


Figure 1: East Pilbara District

Bamboo – Strattons

The Bamboo and Strattons Projects are located approximately 60 km east of Marble Bar. Regional exploration programs completed by Novo and previous explorers, have identified several gold anomalous zones within the Apex Basalt of the Warrawoona Group. The Apex Basalt is the host to orogenic gold prospects along strike, including the Bamboo Creek mining centre (Figure 2), where total historical production is estimated to be over 220,000 ounces at 8.7 g/t Au².

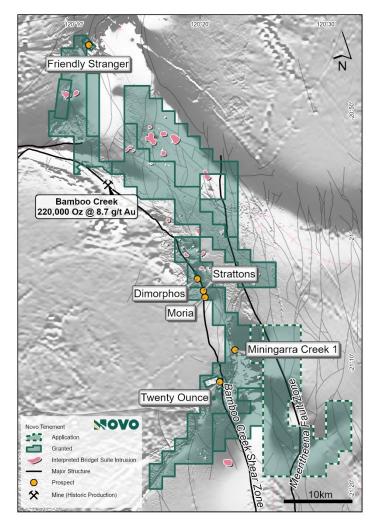


Figure 2: Bamboo - Strattons Projects showing mapped or interpreted intrusion targets

The tenure contains a series of 1.77 Ga Bridget Suite intrusions as part of a 150 km northnorthwest trend (Figure 2). Soil sampling completed by Novo has returned anomalous gold results in proximity to multiple intrusions some of which are emplaced into the otherwise unmineralised Upper Fortescue sequences, suggesting mineralisation is related to their emplacement. During field work – surface gold (Figure 3) was detected in the form of wire gold in proximity to one of these intrusions.

The Bridget Suite intrusions range in composition from hornblende monzogranite to quartz monzonite and associated hornblende porphyry dykes; and as such they postdate the Archean orogenic mineralisation events associated with gold deposits in the Mosquito Creek and Mallina Basins.

² Refer to the Calidus Resources Ltd (ASX: CAI) ASX news release dated <u>19 February 2024 available at www.asx.com.au</u>. Novo has not conducted data verification (including as that term is defined in National Instrument 43-101 *Standards of Disclosure for Mineral Projects*) in respect of the data/information set out in that news release under the JORC Code 2012 or NI 43-101.

With the new Nyamal Agreement now in place, Novo intends to conduct detailed mapping and soil sampling over 2 km strike of the Apex Basalt and two Bridget Suite intrusions to identify drill targets for RC drill testing.

Figure 3: Photos of fine native gold with an unusual wire-like habit, found in proximity to an intrusion at Bamboo.

Cautionary Statement: Visual occurrence of surface gold cannot be taken as representative of bedrock mineralisation and no assaying of the occurrence has been undertaken. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Miralga Project

The Miralga Project is located 30 km west of Marble Bar. The project is located on the eastern flank of the North Pole Dome where exploration in the 1970s and 1990s focussed on porphyrystyle and epithermal vein-style mineralisation within the Panorama Formation. Known porphyry mineralisation is present outside of Novo's tenure at Miralga Creek B (Figure 4), where Au-Ag-Cu mineralisation is associated with a stock-like Archaean porphyry, high-level dykes and epithermal veins.

Geophysical and remote sensing interpretation, coupled with review of existing geochemical datasets, identified several porphyry targets on Novo's tenure where some targets have seen little to no historical exploration. Anomalies were defined using airborne magnetics and radiometric surveys (particularly potassium anomalies), sentinel and satellite imagery, along with normalising base metal geochemical data from the 1970s to 1990s. Porphyry and intrusion-related targets have now been defined over 25 km strike (Figure 4).

Three targets were investigated in the field, two of which require significant follow-up – **Gully Washer** and **Shady Camp West**.

Gully Washer is a precious and base-metal rich breccia and vein array related to a felsic porphyry stock which outcrops over 275 m and is up to 35 m width (Figure 5). Rock samples collected by Novo in 2021 returned peak results of **14.8 g/t Au**, **10,083 g/t Ag (342 oz/t Ag), 3.8% Cu, 28.3% Pb and 3.6% Zn³** (results are not necessarily representative of mineralisation in the district).

High-grade mineralisation is located along the flanks of the gossanous porphyry and related to a maximum six-metre-wide zone of malachite-bearing breccia on both hangingwall and footwall positions of the intrusion (Figure 6). The footwall of the **mineralised gossanous outcrop**

³ Refer to Appendix 1 for assay results.

returned four > 2,000 g/t Ag rock chip samples along 100 m of strike, including one sample of over 1 % Ag.

Exploration by Novo has included a handheld Niton XRF soil grid and reconnaissance mapping which defined intense alteration zones overlapping a **1 km long NW trending Cu soil anomaly** (Figure 5). The Gully Washer breccia is centered in the approximate middle of the broader Cu anomaly and alteration zone.

Immediately east of **Gully Washer**, stream sediment sampling has yielded a peak assay of 266 ppb Au in an area with distinct color anomalism on airborne imagery (Figure 5).

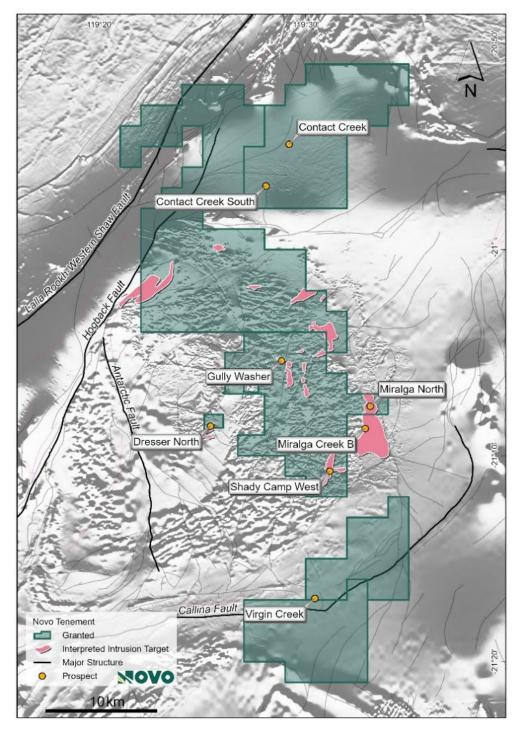


Figure 4: Miralga Project showing mapped or interpreted intrusion targets

Additional mapping, alteration studies, and surface soil and rock chip sampling is planned for Q3 2024 to better delineate high grade mineralisation defined to date, to close off existing soil anomalism, to follow-up the highly anomalous stream sediment sample and to understand the scope of the broader intrusion related target.

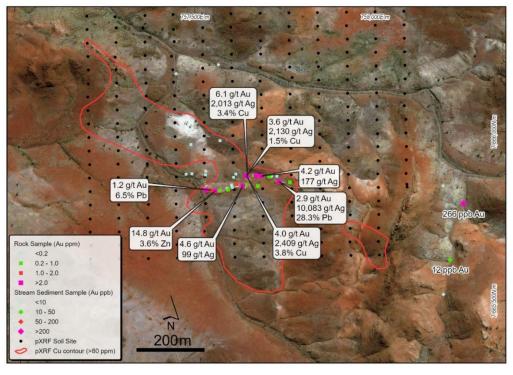


Figure 5: Gully Washer prospect map showing rock sample results.

Figure 6: Mineralised gossan on the southern porphyry margin looking east. Sample R00988 (taken at the position of the central front sample bag) returned assays of 4.6 ppm Au, 99 ppm Ag, and 1.4% Pb⁴.

⁴ Refer to Appendix 1 for assay results

Shady Camp West was defined in the 1980s, with broad surface mapping, rock chip sampling and costeaning defining Cu-Au-(Mo) enriched porphyry and intense alteration of the porphyry and adjacent host basalt (AMAX Australia 1980, 1981). Information disclosed in annual exploration reports filed by AMAX Australia Limited in 1982⁵ that are available on the Western Australian Department of Energy, Mines, Industry Regulation and Safety's ("DEMIRS") website (**WAMEX Reports**), indicate that best costean sampling results include 30 m @ 631 ppm Cu and 100 m @ 461 ppm Cu, with peak assays of 1,350 ppm Cu and 0.32 g/t Au in an altered and potentially leached porphyry. Rock chip results included maximum values of **1.3 g/t Au and 12.5% Cu** associated with the northern and southern margins of the rhyodacite intrusive (AMAX Australia 1980, 1981). Information disclosed in the WAMEX Reports will assist Novo with exploration targeting.

Cautionary Statement: The exploration results contained in the WAMEX Reports have not been reported in accordance with the JORC Code or NI 43-101 and a Competent Person/Qualified Person has not done sufficient work to disclose the exploration results in accordance with the JORC Code 2012 or NI 43-101. It is possible that following further evaluation and/or exploration work that the confidence in the prior reported exploration results may be reduced when reported under the JORC Code 2012 or NI 43-101. Novo confirms that nothing has come to its attention that causes it to question the accuracy or reliability of the results included in the WAMEX Reports, but Novo has not independently validated those results and therefore is not to be regarded as reporting, adopting or endorsing those results. No assurance can be given that Novo will achieve similar results as part of its exploration activities at Shady Camp West.

Shady Camp West was prioritised by Novo for investigation due to a large radiometric potassium anomaly extending over 2.2 km north to south (Figure 7) and discrete magnetic lows and highs associated with an intense colour anomaly on airborne imagery.

Work undertaken by Novo includes rock chip sampling, grid pXRF soil sampling and reconnaissance mapping. Geological mapping identified a suite of felsic porphyries intruding mafic and intermediate volcanics. Intense alteration and associated weathering products include kaolinitic clay and limonite, with silicification around quartz vein stockworks.

Indicative results from handheld Niton XRF soil sampling on 160 m x 40 m spaced E-W lines highlighted a >100 ppm coherent Cu anomaly over 1.2 km long, and open to the north, coincident with potassium alteration, magnetic complexity and maximum quartz veining (Figure 7).

The pXRF readings are not verified by an independent laboratory and are not considered to be a proxy or substitute for laboratory analysis. A single orientation line of -80# soil samples which were analysed by an independent laboratory has defined a weak Au and Mo anomaly correlating with pXRF Cu anomalies, with peak results of 26 ppb Au, 3.7 ppm Mo, 100 ppm As, 250 ppm Cu and 130 ppm Zn⁶. Results may not be representative of mineralisation in the district.

Novo intends to conduct detailed alteration and vein mapping, soil sampling and follow-up ground geophysics if warranted, to generate multi-element geochemistry data and geophysical anomalies to determine whether porphyry style mineralisation exists. This program will be conducted over several weeks in Q3 2024.

⁵ Refer to Amax Australia Limited 1982 Shady Camp Well Prospect Final Report – WAMEX Open File Data Report A11565.

⁶ Refer to Appendix 1 for assay results.

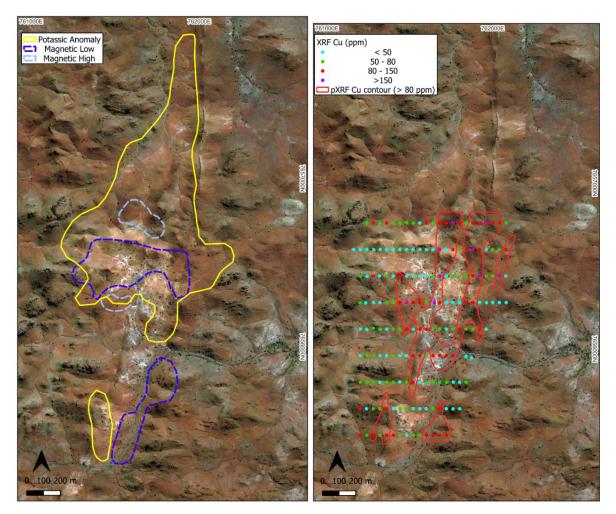


Figure 7: Shady Camp West highlighting geophysical anomalies (left) and pXRF soil Cu geochemical anomalies (right). The potassic anomaly over 2.2 km strike partially overlaps with intense clay alteration of porphyries and host basalt (light colouration on the imagery). Coherent Cu anomalism is open and untested to the north and correlates with maximum quartz veining and weak Au and Mo anomalism in soils.

ANALYTIC METHODOLOGY

Rock chip samples of 1 – 3 kg were submitted to Intertek commercial Genalysis ("**Intertek**") in Perth, Western Australia where they were dried and crushed to -3 mm and pulverized to 75 μ m or better (prep code SP64), with a > 85% pass, then assayed for Au by 50 g charge fire assay FA50/OE and for 48 elements using four acid digest – MS finish (4A/MS). Elements that reported above the upper detection limit for 4A/MS were reanalysed using method 4AH/OE. A minimum of 2 CRM standards relevant for the style of mineralisation and 2 blanks were submitted per 100 samples.

Soil samples were sieved to < 80 mesh and submitted to Intertek for aqua regia to analyse for 33 elements. A minimum of 2 CRM standards, 2 blanks and 4 field duplicates were submitted per 100 samples.

Stream sediment samples were sieved to < 0.9 mm and submitted to Intertek where they were dried and pulverized to 75 μ m or better (prep code SP02), with a > 85% pass, then analysed for aqua regia for 33 elements. In addition, the samples are analysed via BLEG (Bulk Leach Extractable Gold) 500 g cyanide leach with MS finish for Au, Pt, Pd and Ag.

pXRF readings of soils and rock chips were taken using a Niton XLT5 model and were used to aid field interpretation and identification of anomalous target mineralogy and pathfinder elements. The Niton pXRF instrument was calibrated daily and checked against reference material four times per 100 samples and at the start and end of each day.

The Niton pXRF uses an x-ray fluorescence tube to take an immediate reading over a small surface area. It is used to obtain an indicative value of certain elements to assist with exploration targeting. The pXRF readings are not verified by an independent laboratory, are not considered to be a proxy or substitute for laboratory analysis. Results may not be representative of mineralisation in the district.

Except as otherwise noted in this news release, there were no limitations to the verification process and all relevant data was verified by a qualified person/competent person (as defined in National Instrument 43-101 *Standards of Disclosure for Mineral Projects* (NI 43-101) and the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC 2012, Appendix 2) respectively), by reviewing QAQC performance of inserted reference material and the analytical procedures undertaken by Intertek.

Authorised for release by the Board of Directors.

CONTACT

Investors: Mike Spreadborough +61 8 6400 6100 info@novoresources.com North American Queries: Leo Karabelas +1 416 543 3120 leo@novoresources.com **Media:** Cameron Gilenko +61 466 984 953 cameron.gilenko@sodali.com

QP STATEMENT

Mrs Karen (Kas) De Luca (MAIG), is the qualified person, as defined under NI 43-101 *Standards of Disclosure for Mineral Projects*, responsible for, and having reviewed and approved, the technical information contained in this news release. Mrs De Luca is Novo's General Manager Exploration.

JORC COMPLIANCE STATEMENT

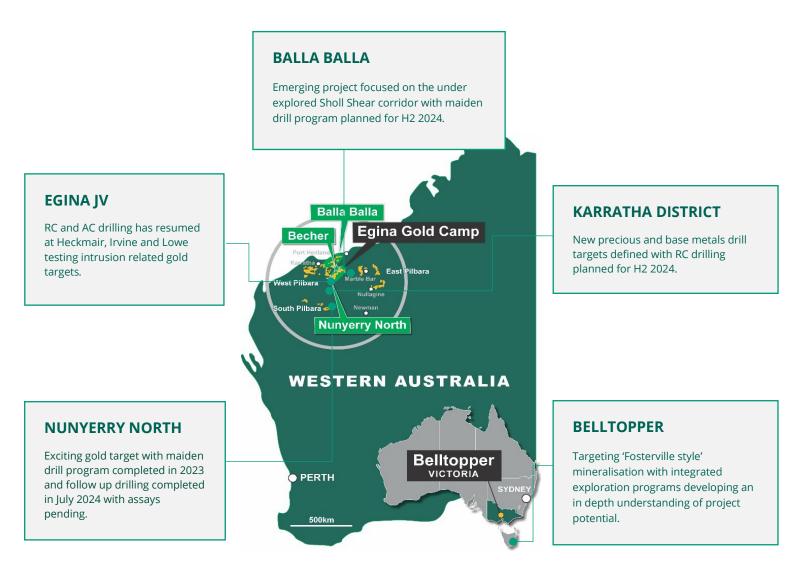
The information in this report that relates to exploration results in the East Pilbara District is based on information compiled by Mrs De Luca, who is a full-time employee of Novo Resources Corp. Mrs De Luca is a Competent Person who is a member of the Australian Institute of Geoscientists. Mrs De Luca has sufficient experience that is relevant to the style of mineralisation and the type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mrs De Luca consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

FORWARD-LOOKING STATEMENTS

Some statements in this news release may contain "forward-looking statements" within the meaning of Canadian and Australian securities law and regulations. In this news release, such statements include but are not limited to planned exploration activities and the timing of such. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors include, without limitation, customary risks of the resource industry and the risk factors identified in Novo's annual information form for the year ended December 31, 2023 (which is available under Novo's profile on SEDAR+ at <u>www.sedarplus.ca</u> and at <u>www.asx.com.au</u>) in the Company's prospectus dated 2 August 2023 which is available at <u>www.asx.com.au</u>. Forward-looking statements speak only as of the date those statements are made. Except as required by applicable law, Novo assumes no obligation to update or to publicly announce the results of any change to any forward-looking statement contained or incorporated by reference herein to reflect actual results, future events

or developments, changes in assumptions or changes in other factors affecting the forward-looking statements. If Novo updates any forward-looking statement(s), no inference should be drawn that the Company will make additional updates with respect to those or other forward-looking statements.

ABOUT NOVO


Novo is an Australian based gold explorer listed on the ASX and the TSX focused on discovering standalone gold projects with > 1 Moz development potential. Novo is an innovative gold explorer with a significant land package covering approximately 6,700 square kilometres in the Pilbara region of Western Australia, along with the 22 square kilometre Belltopper project in the Bendigo Tectonic Zone of Victoria, Australia.

Novo's key project area is the Egina Gold Camp, where De Grey Mining (ASX: DEG) is farming-in to form a JV at the Becher Project and surrounding tenements through exploration expenditure of A\$25 million within 4 years for a 50% interest. The Becher Project has similar geological characteristics as De Grey's 12.7 Moz Hemi Project¹. Novo is also advancing gold exploration at Nunyerry North, part of the Croydon JV (Novo 70%: Creasy Group 30%), where 2023 exploration drilling identified significant gold mineralisation. Novo continues to undertake early-stage exploration across its Pilbara tenement portfolio.

Novo has also formed lithium joint ventures with both Liatam and SQM in the Pilbara which provides shareholder exposure to battery metals.

Novo has a significant investment portfolio and a disciplined program in place to identify value accretive opportunities that will build further value for shareholders.

Please refer to Novo's website for further information including the latest Corporate Presentation.

Appendix 1

Surface sample results for the Miralga Project, listing elements relevant to this mineralisation style (All sample locations are GPS located on MGA_2020 zone 50.)

Sample ID	Туре	Prospect	Au	Ag	Cu	Pb	Zn	Sb	Easting	Northing
			(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
NX1361301	Rock Chip	Gully Washer	14.81	64	3,588	10,965	36,416	1,161	757,548	7,665,836
NX1361302	Rock Chip	Gully Washer	1.18	125	1,692	64,918	5,504	118	757,537	7,665,839
NX1361303	Rock Chip	Gully Washer	0.08	2	86	461	611	11	757,564	7,665,985
NX1361304	Rock Chip	Gully Washer	0.01	3	124	768	365	11	757,523	7,665,895
NX1361305	Rock Chip	Gully Washer	0.01	2	117	70	120	12	757,522	7,665,884
NX1361306	Rock Chip	Gully Washer	0.03	4	159	129	968	12	757,520	7,665,843
NX1361307	Rock Chip	Gully Washer	2.34	40	3,464	9,508	10,334	352	757,522	7,665,839
NX1361308	Rock Chip	Gully Washer	0.13	19	366	9,870	23,730	45	757,600	7,665,876
NX1361309	Rock Chip	Gully Washer	0.02	1	32	203	423	15	757,606	7,665,885
NX1361311	Rock Chip	Gully Washer	0.07	131	575	596	11,812	62	757,635	7,665,874
NX1361312	Rock Chip	Gully Washer	3.60	2,130	14,857	9,008	1,258	1,123	757,635	7,665,878
NX1361313	Rock Chip	Gully Washer	4.02	2,409	37,718	10,857	2,241	1,474	757,636	7,665,880
NX1361314	Rock Chip	Gully Washer	6.07	2,013	33,529	5,138	4,970	2,480	757,638	7,665,882
NX1361315	Rock Chip	Gully Washer	0.64	173	1,659	1,995	2,437	248	757,637	7,665,884
NX1361316	Rock Chip	Gully Washer	0.48	34	376	1,714	6,389	30	757,657	7,665,881
NX1361317	Rock Chip	Gully Washer	2.36	88	1,517	5,158	8,653	285	757,662	7,665,881
NX1361318	Rock Chip	Gully Washer	4.23	177	5,691	14,239	10,653	1,384	757,676	7,665,878
NX1361319	Rock Chip	Gully Washer	0.05	188	350	6,439	702	71	757,706	7,665,879
NX1361320	Rock Chip	Gully Washer	0.04	51	103	2,083	1,839	79	757,703	7,665,877
NX1361321	Rock Chip	Gully Washer	0.26	28	850	2,651	5,314	151	757,699	7,665,876
NX1361322	Rock Chip	Gully Washer	0.01	3	37	235	489	14	757,720	7,665,877
NX1361325	Rock Chip	Gully Washer	2.85	10,083	334	283,103	287	1,774	757,726	7,665,861
NX1361326	Rock Chip	Gully Washer	0.74	48	220	4,525	554	138	757,756	7,665,859
NX1361327	Rock Chip	Gully Washer	0.30	130	501	2,863	1,827	413	757,667	7,665,849
NX1361328	Rock Chip	Gully Washer	0.04	12	454	6,575	5,159	12	757,468	7,665,887
NX1361329	Rock Chip	Gully Washer	0.01	3	122	138	181	7	757,484	7,665,888
R00986	Rock Chip	Gully Washer	0.64	22	827	13,110	2,035	45	757,633	7,665,852
R00987	Rock Chip	Gully Washer	0.03	7	444	1,745	2,649	10	757,630	7,665,847
R00988	Rock Chip	Gully Washer	4.55	99	325	14,262	538	481	757,625	7,665,850
R00989	Rock Chip	Gully Washer	0.24	20	102	3,012	122	81	757,626	7,665,851
R00990	Rock Chip	Gully Washer	0.13	10	451	3,383	6,745	81	757,610	7,665,851
R00991	Rock Chip	Gully Washer	0.03	5	172	1,783	3,002	15	757,607	7,665,852
R00992	Rock Chip	Gully Washer	1.96	10	549	2,786	3,868	155	757,608	7,665,855
R00993	Rock Chip	Gully Washer	0.07	9	150	754	1,631	22	757,594	7,665,853
R00994	Rock Chip	Gully Washer	0.05	14	111	431	1,370	42	757,594	7,665,851
R00995	Rock Chip	Gully Washer	0.05	14	168	1,906	4,004	40	757,594	7,665,851
R00996	Rock Chip	Gully Washer	0.05	7	238	2,421	3,974	26	757,596	7,665,846
R00997	Rock Chip	Gully Washer	0.35	51	303	3,789	1,918	406	757,584	7,665,839
R00998	Rock Chip	Gully Washer	0.06	30	60	6,225	255	92	757,581	7,665,843
R00999	Rock Chip	Gully Washer	0.09	19	70	1,516	349	43	757,561	7,665,838
R01000	Rock Chip	Gully Washer	0.87	96	186	3,413	432	658	757,559	7,665,837

Sample ID	Туре	Project	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)	Easting	Northing
NVO-16206	Stream	Miralga	2.0	0.05	65	7	70	0.3	764,097	7,662,491
NVO-16207	Stream	Miralga	0.5	0.03	54	5	53	0.4	764,115	7,662,484
NVO-16208	Stream	Miralga	2.0	0.06	73	7	84	0.7	764,154	7,662,359
NVO-16209	Stream	Miralga	2.0	0.03	72	6	79	0.5	764,254	7,662,245
NVO-16210	Stream	Miralga	2.0	0.03	69	5	82	0.5	764,259	7,662,234
NVO-16224	Stream	Miralga	1.0	0.03	59	6	66	0.3	764,071	7,662,120
NVO-16225	Stream	Miralga	1.0	0.03	70	5	88	0.5	764,094	7,662,104
NVO-16226	Stream	Miralga	1.0	0.03	84	5	95	0.5	764,262	7,661,635
NVO-16227	Stream	Miralga	1.0	0.03	70	6	87	0.3	764,234	7,661,276
NVO-16228	Stream	Miralga	1.0	0.03	67	5	77	0.4	764,252	7,661,274
NVO-16229	Stream	Miralga	0.5	0.06	55	12	74	0.7	764,379	7,661,143
NVO-16230	Stream	Miralga	1.0	0.03	51	6	67	0.6	764,911	7,662,250
NVO-16231	Stream	Miralga	2.0	0.03	46	6	67	0.6	764,995	7,662,439
NVO-16232	Stream	Miralga	1.0	0.03	72	6	113	0.5	764,811	7,662,748

NVO-16233StreamNVO-16234StreamNVO-16235StreamNVO-16236StreamNVO-16237Stream	Miralga	(ppb)	(ppm)				(ppm)		Northing
NVO-16235 Stream NVO-16236 Stream	-	0.5	0.03	(ppm) 60	(ppm) 6	(ppm) 92	0.5	764,798	7,662,770
NVO-16236 Stream	Miralga	2.0	0.03	51	5	76	0.4	765,342	7,662,705
	Miralga	2.0	0.03	70	5	80	0.4	765,363	7,662,585
NVO-16237 Stream	Miralga	1.0	0.03	73	6	71	0.5	765,408	7,662,391
	Miralga	0.5	0.03	102	13	101	0.5	765,419	7,662,052
NVO-16238 Stream	Miralga	0.7	0.03	65	10	69	0.5	765,375	7,662,044
NVO-16240 Stream NVO-16241 Stream	Miralga Miralga	1.0 0.5	0.03 0.03	66 12	6 4	85 24	0.7 0.4	765,198 765,300	7,662,795 7,661,905
NVO-16242 Stream	Miralga	0.5	0.03	12	4	42	0.4	765,161	7,661,801
NVO-16243 Stream	Miralga	0.5	0.03	32	7	45	0.5	764,990	7,661,305
NVO-16244 Stream	Miralga	0.5	0.03	47	9	63	0.7	764,854	7,661,227
NVO-16246 Stream	Miralga	1.0	0.03	65	6	68	0.6	764,595	7,661,315
NVO-16247 Stream	Miralga	0.5	0.03	129	4	101	0.3	759,709	7,661,134
NVO-16248 Stream	Miralga	0.5	0.03	122	4	98	0.3	759,703	7,661,120
NVO-16249 Stream	Miralga	688.4	0.03	118	6	72	0.3	759,571	7,661,257
NVO-16250 Stream	Miralga	0.5	0.03	130	4	98	0.3	759,558	7,661,247
NVO-16276 Stream	Miralga	0.5	0.03	119	6	114	0.3	759,438	7,661,238
NVO-16277 Stream	Miralga	2.0	0.09	67	25	108	0.6	759,627	7,661,535
NVO-16278 Stream NVO-16279 Stream	Miralga Miralga	2.0 0.5	0.05 0.03	73 65	29 7	128 76	0.4	759,631 759,841	7,661,516 7,662,980
NVO-16279 Stream	Miralga	1.0	0.03	65	7	81	0.4	759,841	7,662,980
NVO-16281 Stream	Miralga	0.5	0.06	89	, 11	91	0.4	759,543	7,662,915
NVO-16282 Stream	Miralga	0.5	0.03	50	9	129	0.4	759,554	7,662,891
NVO-16283 Stream	Miralga	0.5	0.03	32	7	46	0.5	759,517	7,662,816
NVO-16284 Stream	Miralga	0.5	0.03	65	8	72	0.5	759,599	7,663,809
NVO-16286 Stream	Miralga	0.5	0.03	53	7	61	0.6	759,609	7,663,813
NVO-16287 Stream	Miralga	0.5	0.03	25	9	58	0.7	759,520	7,663,530
NVO-16288 Stream	Miralga	0.5	0.07	22	15	63	0.8	759,505	7,663,533
NVO-16289 Stream	Miralga	0.5	0.06	64	11	94	0.4	759,108	7,662,227
NVO-16290 Stream	Miralga	0.5	0.08	131	9	79	0.6	759,261	7,662,463
NVO-16291 Stream	Miralga	0.5	0.03	67	20	136	1.0	758,070	7,663,986
NVO-16292 Stream NVO-16293 Stream	Miralga Miralga	0.5 0.5	0.03 0.06	13 86	7 26	38 107	0.5 0.6	758,354 758,352	7,664,405 7,664,332
NVO-16294 Stream	Miralga	0.5	0.08	40	13	50	0.5	758,381	7,664,305
NVO-16296 Stream	Miralga	0.5	0.03	58	15	128	0.4	758,455	7,664,248
NVO-16297 Stream	Miralga	2.0	0.03	42	23	102	0.5	758,469	7,663,862
NVO-16298 Stream	Miralga	0.5	0.08	91	25	163	0.9	758,271	7,663,688
NVO-16299 Stream	Miralga	0.5	0.10	102	9	146	0.7	758,182	7,663,624
NVO-16354 Stream	Miralga	0.5	0.13	17	62	77	0.5	758,411	7,664,874
NVO-16355 Stream	Miralga	0.5	0.03	16	6	37	0.4	758,152	7,665,077
NVO-16356 Stream	Miralga	0.5	0.03	21	7	48	0.6	758,083	7,665,062
NVO-16357 Stream	Miralga	1.0	0.17	58	36	121	0.9	758,177	7,665,521
NVO-16358 Stream	Miralga	12.0	1.12	64	128	153	0.8	758,197	7,665,623
NVO-16359 Stream NVO-16360 Stream	Miralga Miralga	1.0 0.5	0.03 0.03	28 15	12 9	81 69	0.9 0.7	758,429 758,417	7,665,634 7,665,636
NVO-16360 Stream NVO-16361 Stream	Miralga	266.3	0.03	52	9 48	107	0.7	758,417	7,665,789
NVO-16362 Stream	Miralga	0.8	0.20	108	14	131	0.6	756,641	7,667,321
NVO-16363 Stream	Miralga	1.0	0.15	62	33	136	0.5	756,586	7,667,275
NVO-16364 Stream	Miralga	0.5	0.16	89	23	154	0.5	757,129	7,666,582
NVO-16366 Stream	Miralga	1.0	0.12	88	17	125	0.6	757,609	7,667,072
NVO-16367 Stream	Miralga	0.5	0.15	147	17	131	0.7	757,636	7,667,066
NVO-16368 Stream	Miralga	0.5	0.09	142	11	101	0.4	757,815	7,667,122
NVO-16369 Stream	Miralga	1.0	0.16	130	18	116	0.6	757,847	7,667,106
NVO-16371 Stream	Miralga	1.0	0.16	123	24	123	0.7	758,263	7,666,822
NVO-16372 Stream	Miralga	2.0	0.16	132	19	133	0.6	758,265	7,666,831
NVO-16373 Stream	Miralga Miralga	0.5	0.13	117	14	138	0.7	758,145	7,666,476
NVO-16374 Stream NVO-16375 Stream	Miralga Miralga	2.0 0.5	0.06 0.13	102 94	10 13	118 133	0.7 0.6	758,142 757,852	7,666,465 7,666,683
NVO-16376 Stream	Miralga	0.5	0.13	94 74	13	133	0.6	757,852	7,666,674
NVO-16377 Stream	Miralga	0.8	0.08	100	15	118	0.6	759,292	7,666,945
NVO-16378 Stream	Miralga	0.7	0.00	100	13	132	0.4	759,329	7,666,908
NVO-16379 Stream	Miralga	0.5	0.07	81	21	95	0.4	759,345	7,666,907
NVO-16380 Stream	Miralga	1.0	0.11	81	13	107	0.4	759,106	7,666,677

Sample ID	Туре	Project	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)	Easting	Northing
NVO-16381	Stream	Miralga	0.8	0.10	195	20	155	0.7	759,090	7,666,700
NVO-16382	Stream	Miralga	0.5	0.03	28	7	38	0.6	761,662	7,655,617
NVO-16383	Stream	Miralga	2.0	0.03	56	5	70	0.3	762,188	7,655,318
NVO-16384	Stream	Miralga	1.0	0.03	67	7	86	0.3	762,173	7,655,332
NVO-16386	Stream	Miralga	0.5	0.03	81	6	77	0.4	762,272	7,654,725
NVO-16387	Stream	Miralga	1.0	0.03	64	6	82	0.3	761,875	7,654,682
NVO-16388	Stream	Miralga	0.5	0.03	54	6	73	0.5	761,909	7,654,734
NVO-16389	Stream	Miralga	0.5	0.03	39	6	57	0.5	761,529	7,655,175
NVO-16390	Stream	Miralga	0.5	0.03	66	5	73	0.4	761,509	7,655,178
NVO-16391	Stream	Miralga	0.5	0.03	46	6	61	0.5	761,519	7,655,247
NVO-16392	Stream	Miralga	0.5	0.03	65	5	104	0.5	759,997	7,656,120
NVO-16393	Stream	Miralga	0.5	0.06	92	8	128	0.5	759,955	7,655,795
NVO-16394	Stream	Miralga	1.0	0.03	77	4	123	0.4	759,924	7,655,782
NVO-16396	Stream	Miralga	0.5	0.08	85	7	107	0.5	760,264	7,655,541
NVO-16397	Stream	Miralga	0.5	0.03	83	4	123	0.4	760,613	7,655,338
NVO-16398	Stream	Miralga	0.5	0.03	95	9	107	0.7	760,612	7,655,366
NVO-16399	Stream	Miralga	0.5	0.06	113	6	114	0.5	760,816	7,655,348
NVO-16400	Stream	Miralga	0.5	0.06	86	12	98	0.4	761,162	7,655,284
NVO-16511	Stream	Miralga	0.5	0.03	60	6	100	0.4	760,648	7,657,239
NVO-16512	Stream	Miralga	2.0	0.08	58	8	110	0.4	760,634	7,657,240
NVO-16513	Stream	Miralga	0.8	0.05	61	7	99	0.4	760,488	7,657,194
NVO-16514	Stream	Miralga	0.5	0.03	36	10	66	0.5	760,563	7,656,936
NVO-16515	Stream	Miralga	2.0	0.03	70	6	111	0.4	760,689	7,656,784
NVO-16516	Stream	Miralga	0.5	0.03	41	5	74	0.4	760,696	7,656,803

Sample ID	Туре	Project	Au (ppb)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)	Easting MGA 2020 Z50	Northing MGA 2020 Z50
H9594	Soil	Shady Camp West	1.0	4	60	10	57	0.6	761,199	7,656,279
H9595	Soil	Shady Camp West	1.0	3	47	8	52	0.7	761,239	7,656,279
H9596	Soil	Shady Camp West	1.0	5	31	10	39	0.5	761,279	7,656,278
H9631	Soil	Shady Camp West	0.5	3	164	6	39	0.4	761,479	7,656,279
H9632	Soil	Shady Camp West	2.0	3	109	8	52	0.6	761,519	7,656,279
H9633	Soil	Shady Camp West	0.5	3	79	8	64	0.5	761,559	7,656,279
H9640	Soil	Shady Camp West	5.0	3	32	28	16	0.6	761,799	7,656,278
H9641	Soil	Shady Camp West	12.0	100	83	17	36	3.7	761,838	7,656,278
H9642	Soil	Shady Camp West	4.0	16	94	21	130	0.9	761,879	7,656,279
H9643	Soil	Shady Camp West	1.0	5	39	8	74	0.6	761,920	7,656,279
H9644	Soil	Shady Camp West	1.0	4	50	9	50	0.8	761,960	7,656,278
H9597	Soil	Shady Camp West	1.0	6	73	17	44	0.9	761,320	7,656,279
H9598	Soil	Shady Camp West	2.0	3	52	9	52	0.5	761,359	7,656,278
H9599	Soil	Shady Camp West	2.0	3	59	8	49	0.5	761,399	7,656,278
H9630	Soil	Shady Camp West	1.0	4	100	9	44	0.7	761,439	7,656,279
H9634	Soil	Shady Camp West	0.5	3	54	8	41	0.5	761,599	7,656,279
H9636	Soil	Shady Camp West	26.0	4	250	20	32	0.5	761,648	7,656,278
H9637	Soil	Shady Camp West	13.0	4	107	22	27	0.4	761,679	7,656,278
H9638	Soil	Shady Camp West	7.0	4	71	15	19	1.1	761,720	7,656,279
H9639	Soil	Shady Camp West	11.0	5	105	22	26	1.0	761,759	7,656,278
H9646	Soil	Shady Camp West	2.0	4	67	9	75	0.7	761,999	7,656,278
H9647	Soil	Shady Camp West	0.5	3	40	24	71	0.5	762,040	7,656,279
H9648	Soil	Shady Camp West	5.0	5	61	51	112	0.8	762,079	7,656,279

Visual wire gold observations (Bamboo)

(All sample locations are GPS located on MGA_2020 zone 50.)

Sample ID	Туре	Project	Mineral observed	Visual estimate (%)	Description mineral size (mm)	Easting	Northing
N/A	Detected	Bamboo	Native Gold	N/A	Wire gold	220,735	7,673,280

Appendix 2 - JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Rock chips samples were collected by grab sampling 1 – 3 kg of material which were dispatched to Intertek Genalysis, Western Australia for analysis. Sample sites were selected based to be representative on the lithology sampled, and the same sampling technique was employed at each sample site where possible. Stream sediment samples were sieved to < 0.9 mm and submitted to Intertek where they were dried and pulverized to 75 µm or better and analysed using aqua regia and BLEG (Bulk Leach Extractable Gold) 500 g cyanide leach with MS finish for Au, Pt, Pd and Ag. Soil samples of 200g were collected from small pits 2 cm – 20 cm depth and sieved to <80#. Analysis depends on anticipated target mineralisation and includes aqua regia for all soils. pXRF readings of soils were taken using a NITON XLT5 model and were used to aid field interpretation and identification of anomalous target mineralogy and pathfinder elements. The Niton pXRF machine was calibrated daily. Wire gold specimens were detected by hand using a Minelab GPZ 7000 metal detector.
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit, or other type, whether core is oriented and if so, by what method, etc).	No drilling was undertaken.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• No drilling was undertaken.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	No drilling was undertaken.

Criteria	JORC Code explanation	Commentary
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Rock chip samples were dried, crushed and pulverised (SP64) by Intertek Genalysis to create a 50 g charge, then assayed for Au (+/- Pt and Pd) by fire assay FA50/OE and for 48 elements using four acid digest – MS finish (4A/MS). Stream sediment samples were dried and pulverized to 75 µm or better (prep code SP02), with a > 85% pass, then analysed for aqua regia for 33 elements. In addition, the samples are analysed via BLEG (Bulk Leach Extractable Gold) 500 g cyanide leach with MS finish for Au, Pt, Pd and Ag. Soil samples required no prep and were analysed for 32 elements by aqua regia digest with MS finish (lab method AR25/MS). pXRF readings of soils were taken using a NITON XLT5 model and were used to aid field interpretation and identification of anomalous target mineralogy and pathfinder elements. The Niton pXRF machine was calibrated daily. The sampling techniques and sample size is considered appropriate for this style of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (if lack of bias) and precision have been established. 	 The rock chip sample assay methodology noted above is considered appropriate for the style of mineralisation tested. The method includes inserting 2 CRM standards and 2 blanks per 100 samples or at least one of each per sample submission. The soil and stream sample assay methodology has low level detection for gold and multi-elements and is considered appropriate for soil geochemistry for outcropping or near surface mineralisation. The method includes insertion of at least 2 blanks 2 CRM standards and 4 field duplicates per 100 samples. pXRF readings of soils were taken using a NITON XLT5 model and were used to aid field interpretation and identification of anomalous target mineralogy and pathfinder elements. This is appropriate for first pass reconnaissance and anomaly definition. The machine is calibrated daily and at least four CRMs are inserted per 100 samples and at the start and end of the day. No QAQC issues were detected.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Primary data was collected in the field and stored using database compatible excel templates which were then forwarded to the database manager email for upload to the Geobank (v2022.5) database, buffered through a validation portal that ensures code and primary record compliance. Geobank is a front-end UX/UI tender software platform (developed and sold by Micromine) attached to a SQL v15.1 server. Assay data were loaded from lab certificates received from the registered laboratory by an internal database manager or external database consultant, and industry-standard audit trails and chain-of-custody was adhered to.

Criteria	JORC Code explanation	Commentary
		 Verification included checking the data against original logs and utilising laboratory certificates. No adjustments of the assay data were made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• All surface sample reconnaissance locations were recorded in by hand-held GPS using the GDA 2020 zone 50 co-ordinate system.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Limited rock samples are taken and are indicative of potential grade tenor. These do not indicate any continuity or scale potential. Limited stream samples are taken and provide a vector towards potential mineralisation but are not indicative of grade tenor or scale potential. pXRF soil samples at Gully Washer and Fred's Well East were taken on a nominal 80 m x 40 m grid and 160 m x 20 m spacing respectively.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• pXRF sample grids were orientated to best intersect the lithological and structural trends at right angles.
Sample security	• The measures taken to ensure sample security.	• All samples are stored and managed on site by internal staff. Samples are then transported by reputable companies to a registered laboratory where they are stored in a locked facility before being tracked and processed through the preparation and analysis system at the laboratory.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits have been undertaken.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The Gully Washer and Fred's Well East prospects are part of the Miralga Project and are located on Exploration License E45/4922, approximately 25 km west of Marble Bar. The tenement is 100% held by Nullagine Gold Pty Ltd, a wholly owned subsidiary of Novo. There are no known Registered Heritage Sites within this tenement. A geological heritage site is located within the Dresser Formation and relates to Archean stromatolites. A larger reserve is planned to further expand the protection of these oldest fossils. As the geological heritage site is related to the Dresser Formation where stromatolites occur, it is not expected to impact on the remainder of the tenement prospective for porphyry mineralisation. The prospects fall under the granted Nyamal Native Title determination WC1999/008 and is subject to a land access and mineral exploration agreement with the Native Title Holders. The tenements are currently in good standing and there are no known impediments.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 In 1969 – 1970, Anglo American conducted a large stream sampling program comprising 1,345 samples, analysed for Cu, Ni, Pb, and Zn. AMAX conducted surface sampling and costeaning during 1980 and 1981, delineating the Fred's Well Creek prospect. Haoma Mining explored the district from 1998 to 2018, mostly focussing on the North Pole prospect outside of current Novo tenure, and various small barite deposits. Sipa Resources explored the current Gully Washer prospect and conducted surface rock sampling and drilled six shallow RC drill holes. Results include up to 20.7 g/t Au from rock sampling and a best of 1 m at 6.22 ppm Au from RC chips.
Geology	• Deposit type, geological setting, and style of mineralisation.	 The Miralga Project is located on the eastern flank of the North Pole Dome. The North Pole monzogranite has intruded an Archean sequence of mafic to felsic volcanics and volcaniclastics and is prospective for porphyry-style and epithermal vein-style mineralisation within the Panorama Formation. Known porphyry mineralisation is present outside of Novo's tenure at Miralga Creek B, where Au-Ag-Cu mineralisation is associated with a stock-like Archaean porphyry, high-level dykes and epithermal veins. Wire gold specimens were detected by hand in proximity to one of the Bridget Suite intrusions at Bamboo.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including Easting and northing of the drill hole collar, Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip	• No drilling was undertaken.

Criteria	JORC Code explanation	Commentary
	 and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	• No drilling was undertaken.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 No drilling was undertaken. Rock sample results are indicative in nature and, whilst representatively sampling the target lithology, do not contain any width or length information other than a qualitative description of the target.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• Refer to the body of the release for appropriate maps and diagrams.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All rock sample results are reported in Appendix 1. Soil sample analytical and pXRF results are not listed here but summarised in diagrams and in the body of the release.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• No additional data.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Refer to the body of the release.

No Section 3 or 4 report as no Mineral Resources or Ore Reserves are reported in this Appendix