

PROMISING SURFACE EXPLORATION INFORMS TIBOOBURRA RC DRILLING PROGRAM

HIGHLIGHTS

- Recent exploration by Novo at the **Clone prospect** included detailed structural, lithological and regolith mapping, pXRF and < 80# mesh soil sampling, and rock chip sampling.
- Novo rock chip sampling returned peak results of **89.6 g/t Au and 41.9 g/t Au** from mullock dump samples associated with historical workings, and **31.4 g/t Au and 10.4 g/t Au** from quartz vein outcrop over 700 m of strike, supporting previous high grade drill results.
- Soil sampling defined a ~ 600 m long and up to 250 m wide coherent anomaly > 30 ppb Au, with peak results of **1,585 ppb Au and 1,440 ppb Au**.
- Mapping defined a west dipping thrust (**Clone Thrust**) associated with high grade gold mineralisation and significant sericite-carbonate alteration.
- A ~2,000 m targeted RC drill program is planned to commence in April 2025 to test this high-grade gold mineralised trend.
- RC drilling at Clone completed by Manhattan Corporation Limited (ASX: MHC) in 2023, highlighted potential for shallow dipping high-grade gold mineralisation, with excellent drill results returned from 11 holes including¹:
 - \circ 7 m at 7.23 g/t Au from 81 m, including 3 m at 16.1 g/t Au (CL0007)
 - 9 m at 6.03 g/t Au from 16 m (CL0010)
 - 6 m at 4.22 g/t Au from 66 m, including 2 m at 11.65 g/t Au (CL0004)
 - 31 m at 1.29 g/t Au from 60 m, including 3 m at 6.52 g/t Au (CL0002)
- The Manhattan RC program tested some 250 m strike of an interpreted trend > 700 m to a maximum depth below surface of 75 m.
- The Clone prospect is underexplored with mineralisation open in all directions and trending under cover to the south.
- The southern cover sediments extend for up to 15 km over the prospective target basement corridor and provide opportunities to explore for potential 'blind discoveries'.

Mike Spreadborough, Executive Co-Chairman and Acting Chief Executive Officer, said: "We look forward to commencing our RC drill program at the Clone prospect, which forms part of our Tibooburra Gold Project, located in northwestern NSW.

"Tibooburra is a standout exploration opportunity due to previous high-grade drilling results and compelling exploration upside. We aim to start drilling this month and the program we have developed will test several priority gold targets which were identified through our recently completed three-week reconnaissance program. The remainder of 2025 is set to be a busy year exploration-wise for Novo and we are focused on executing on our strategy and delivering significant value to our shareholders."

Head Office Level 3, 46 Ventnor Avenue, West Perth WA 6005 +61 8 6400 6100

PERTH, WEST AUSTRALIA - Novo Resources Corp. (Novo or the **Company**) (ASX: NVO) (TSX: NVO) (OTCQB: NSRPF) is pleased to announce that an RC program at the Tibooburra Gold Project (**Tibooburra**) (*Figure 1*), located in northwestern NSW is planned to commence in April 2025. The drill program will focus on the **Clone prospect** (*Figures 2 and 3*) over a strike of several hundred metres and is designed to test high-grade gold targets recently confirmed during a successful three-week field campaign of mapping and surface sampling.

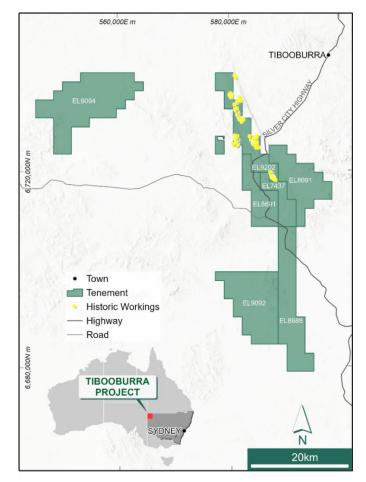
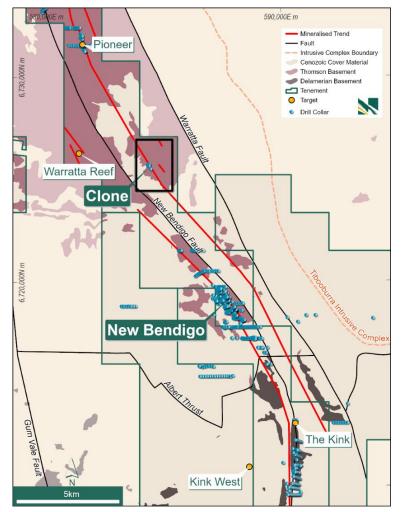



Figure 1: Location of the Tibooburra Gold Project, in northwestern NSW.

Figure 2: Drone footage of mapping activities at the Clone prospect

Figure 3: Tibooburra project tenure, with regional geology, drill collars, main prospects, highlighting multiple parallel mineralised trends.

Tibooburra is an advanced exploration opportunity which covers much of the historic Albert Goldfield (*Figure 1*). Tenure includes six granted exploration licences over 630 sq km.

The agreement with Manhattan Corporation Limited (ASX: MHC) (**Manhattan**)² grants Novo an option to acquire a 70% interest in the tenements comprising this tenure, subject to (among other things) Novo meeting two minimum expenditure requirements over two 12 month periods. Refer to Novo's 13 December 2024 news release titled "Novo strengthens portfolio with two High-Grade gold projects in NSW, Australia" for the detailed terms of the agreement with Manhattan.

Geological mapping and surface sampling of the Clone trend defined several targets that warrant drill testing or further surface geochemical sampling and review. Results from minus 80# mesh soil sampling confirmed Au anomalism associated with the Clone Thrust and splay structures, with rock chip sampling confirming high-grade gold mineralisation within the main zone of workings.

An initial Novo RC drill program of ~ 2,000 m is planned to commence in April 2025 and will target the main zone of historical workings at Clone over ~700 m of strike.

Overview

The Albert Goldfields lies on a unique district-scale bend at the boundary of the Thomson and Delamarian orogens, with stratigraphy wrapping around the Tibooburra granite intrusive complex to the northeast.

Over 200 historic workings on multiple lines, delineating over 34 km of interpreted mineralised trends have been identified at Tibooburra. Several targets were highlighted by Manhattan including New Bendigo, Clone, Pioneer, Elizabeth Reef and Good Friday (*Figure 3*). However, outside of the New Bendigo prospect, little systematic modern exploration has been conducted. The area is significantly under-explored, and satellite imagery and interpretation show untested cover sequences, particularly in the south. At Clone, extensive historical workings manifest over ~450 m strike and 20 m to 40 m in depth.

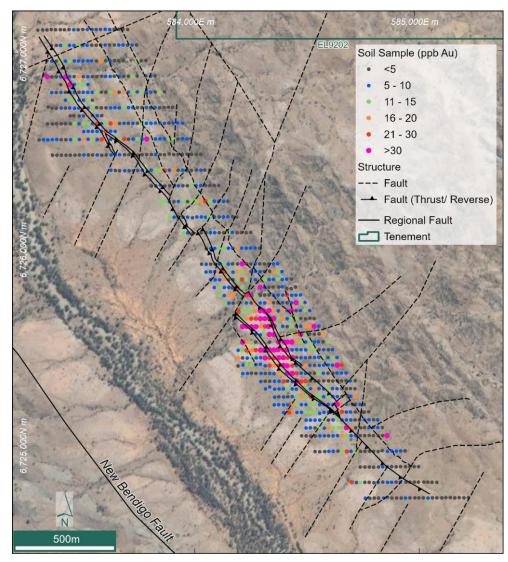
RC drilling by Manhattan in 2023 highlighted potential for shallow dipping **high-grade gold mineralisation**. Excellent drill results were returned in fresh rock from an initial 11-hole RC drill program testing 250 m strike to a maximum depth below surface of 75 m, including²:

- 7 m at 7.23 g/t Au from 81 m, including 3 m at 16.1 g/t Au (CL0007)
- 9 m at 6.03 g/t Au from 16 m (CL0010)
- 6 m at 4.22 g/t Au from 66 m, including 2 m at 11.65 g/t Au (CL0004)
- 31 m at 1.29 g/t Au from 60 m, including 3 m at 6.52 g/t Au (CL0002)

This mineralisation remains open in all directions, with targeted mineralised basement trending under cover sediments to the south. The cover sediments extend for some 15 km providing opportunities for exploration targeting potential 'blind discoveries'.

Novo has not conducted data verification (as that term is defined in National Instrument 43-101 Standards of Disclosure for Mineral Projects and JORC 2012) in respect of the above data from New Bendigo and Clone and therefore is not to be regarded as reporting, adopting or endorsing those results/figures. No assurance can be given that Novo will achieve similar results.

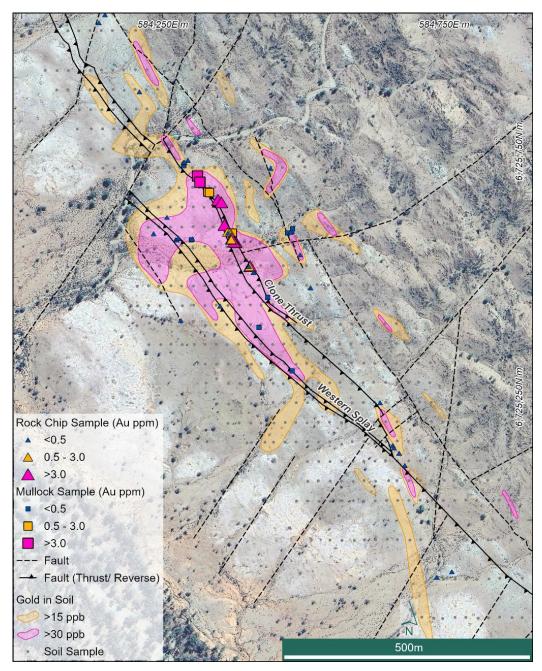
Recent Soil and Rock Chip Sample Results


A three-week field campaign comprising geochemical surface sampling and detailed mapping of the main ~ 3 km strike at the Clone prospect was completed in February 2025, with all assay results returned. The field programs were devised to investigate controls on gold mineralisation and allowed Novo to design a follow up RC drilling program to validate previous drill results. Novo is anticipating that this program may significantly extend known mineralisation along strike, down dip and down-plunge.

Results from all aspects of the exploration work proved extremely promising, supporting the decision to commit to ~2,000 m of RC drilling at Clone in April 2025.

Mapping identified a package of folded and sheared deep marine meta-sediments ranging from siltstone (shale and slate) to phyllite with limited variation in grain size. Metamorphism of the host rocks is greenschist facies. Structure in the mapping area is dominated by complex folding (possibly multi-phase) including interpreted isoclinal folding in the immediate Clone area, overprinted by a strong NW trending regional foliation.

Mineralised late-stage NNW to NW trending moderately southwest dipping shears (interpreted as reverse faults) have been the focus for much of the historical workings. Generally, the best mineralisation occurs where these structures bend in a more northerly direction (*Figure 4*), producing 1 m to 10 m wide shear zones. The main shear, the Clone Thrust, is traceable over 3 km strike and trends under cover to the NW and SE. Several splay structures are also present and are potentially part of the fertile architecture of the belt (*Figure 4* and *Figure 5*). NNE trending cross-cutting faults are common, with interpreted sinistral movement on the main shear zones. Mineralised veining includes west dipping late-stage quartz veins which vary between laminated, massive, brecciated and sheared, and contain rare sulphide and green sericite.


Figure 4: Structural mapping and thematically mapped minus 80# mesh soil samples over the ~ 3 km Clone Trend

Alteration, especially in these mineralised shears, is dominated by intense sericite and minor sulphides (pyrite and arsenopyrite). Green sericite is present on quartz vein selvedges in almost all historic workings. A broad strong zone of alteration is present between the Clone Thrust and the Western Splay adjacent to the main Clone target.

Conventional minus 80# mesh soil sampling on a nominal grid of 20 m x 40 m over areas of historical workings, extending to 20 m x 80 m to the north and south, has defined a 600 m long coherent > 30 ppb Au anomaly with peak results of **1,585 ppb Au** and **1,440 ppb Au** over the main target area. See Appendix 1 for significant soil sample results.

Rock chip sampling (*Figure 5 and Figure 6*) yielded peak results of **89.6 g/t Au and 41.9 g/t Au** from mullock dump samples at the northern end of the main Clone workings. The samples comprised sheared phyllite with multiple centimetre scale quartz veinlets and minor boxwork after sulphides. In the southern part of the main workings, peak results include **31.4 g/t Au and 10.4 g/t Au** from within the west dipping Clone Thrust (*Figure 7*). Several samples collected in the main area graded > 3 g/t Au. See Appendix 2 for all rock sample results.

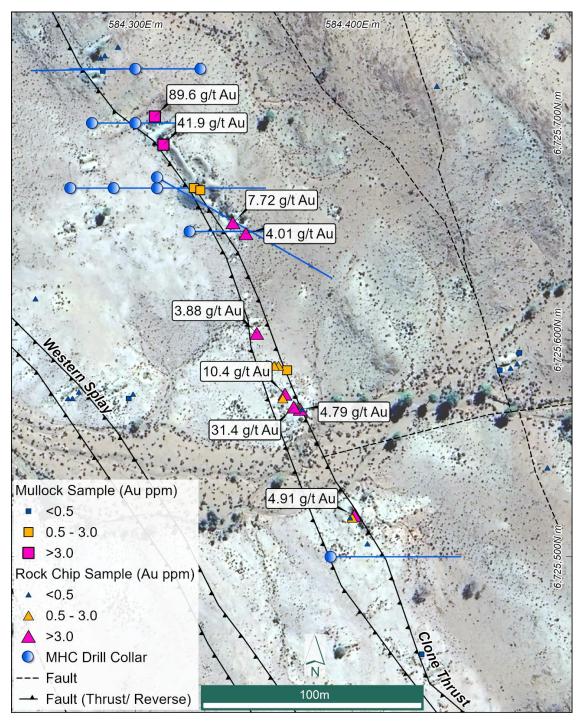


Figure 5: Soil sampling anomaly and rock chip sampling across the main Clone Prospect

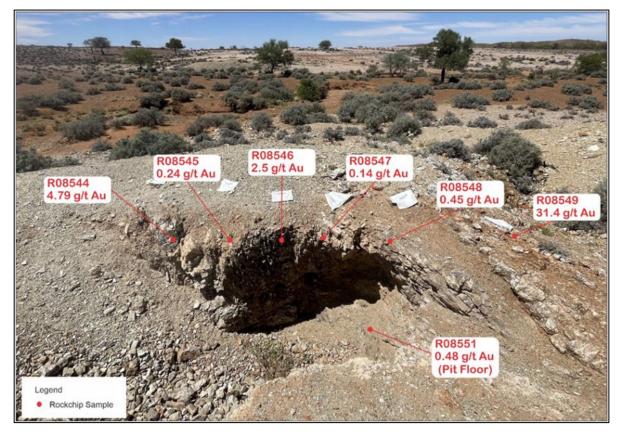

High-grade gold assay results may highlight the potential for a coarse component of gold in the mineralised system at Clone, leading to difficulties in obtaining accurate rock chip results. A program of 20-30 samples grading > 0.1 g/t Au will be re-assayed via screen-fire assay to assess the coarse gold deportment and better inform assays of drill samples.

Figure 6: Detailed map showing Manhattan RC drill collars, in addition to results from recent Novo rock chip and mullock dump sampling at Clone; results may not be indicative of mineralisation in the district

Figure 7: Rock chip sample results from an exposure of the west dipping Clone Thrust, highlighting a significant high-grade zone of mineralisation over approx. 8 m width with a peak result of 31.4 g/t Au from the western-most quartz vein; results may not be indicative of mineralisation in the district

Planned RC Drill Program

Geological mapping and surface sampling of the Clone trend defined several targets that warrant drill testing or further surface geochemical sampling and review.

Results from minus 80# mesh soil sampling confirmed Au anomalism associated with the Clone Thrust and splay structures, with rock chip sampling confirming high-grade gold mineralisation within the main zone of workings.

The initial RC drill program of ~ 2,000 m is planned to commence in April 2025 and will target the main zone of historical workings at Clone over ~700 m of strike.

A heritage survey has been completed by the Tibooburra Local Aboriginal Land Council (TLALC), with no heritage sites located on the drill pads or the field track required to access the northern drill holes. An APO for all proposed drillholes and the northern access track was successfully returned in March.

Authorised for release by the Board of Directors.

CONTACT

Investors: Mike Spreadborough +61 8 6400 6100 info@novoresources.com North American Queries: Leo Karabelas +1 416 543 3120 leo@novoresources.com **Media:** Cameron Gilenko +61 466 984 953 cameron.gilenko@sodali.com

QP STATEMENT

Mrs. Karen (Kas) De Luca (MAIG), is the qualified person, as defined under National Instrument 43-101 *Standards of Disclosure for Mineral Projects*, responsible for, and having reviewed and approved, the technical information contained in this news release. Mrs De Luca is Novo's General Manager Exploration.

JORC COMPLIANCE STATEMENT

The information in this news release that relates to previously reported Exploration Results from Novo's NSW Gold Portfolio is extracted from Novo's ASX announcement entitled Novo Strengthens Portfolio with Two High-Grade Gold Projects in NSW, Australia released to ASX on 13 December 2024 which is available to view at <u>www.asx.com.au</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the competent persons findings are presented have not been materially modified from the original market announcement.

The information in this news release that relates to the previously reported exploration target at Belltopper is extracted from Novo's ASX announcement entitled Belltopper Mineralisation Modelling Defines Prospectivity released to ASX on 25 September 2024 which is available to view at <u>www.asx.com.au</u>. The Company confirms that it is not aware of any new information or data that materially affects the information in the original market announcement and that the form and context in which the Competent Person's findings are presented has not been materially modified from the original market announcement.

FORWARD-LOOKING STATEMENTS

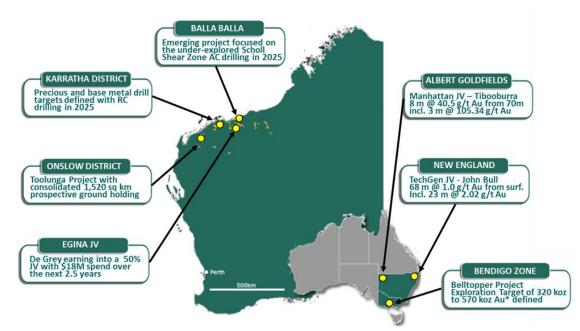
Some statements in this news release may contain "forward-looking statements" within the meaning of Canadian and Australian securities law and regulations. In this news release, such statements include but are not limited to planned exploration activities and the timing of such. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors include, without limitation, customary risks of the resource industry and the risk factors identified in Novo's annual information form for the year ended December 31, 2024 (which is available under Novo's profile on SEDAR+ at www.sedarplus.ca and at www.asx.com.au) and in the Company's prospectus dated 2 August 2023 which is available at <u>www.asx.com.au</u>. Forward-looking statements speak only as of the date those statements are made. Except as required by applicable law, Novo assumes no obligation to update or to publicly announce the results of any change to any forward-looking statement contained or incorporated by reference herein to reflect actual results, future events or developments, changes in assumptions or changes in other factors affecting the forward-looking statements. If Novo updates any forward-looking statement(s), no inference should be drawn that the Company will make additional updates with respect to those or other forward-looking statements.

¹ Refer to ASX news release by Manhattan Corp dated 10/07/2023 – New High-Grade Gold Discovery

² Refer to ASX news release by Novo Resources dated 13/12/2024 – Novo Strengthens Portfolio with Two High-Grade Gold Projects in NSW, Australia.

ABOUT NOVO

Novo is an Australian based gold explorer listed on the ASX and the TSX focussed on discovering standalone gold projects with > 1 Moz development potential. Novo is an innovative gold explorer with a significant land package covering approximately 5,500 square kilometres in the Pilbara region of Western Australia, along with the 22 square kilometre Belltopper project in the Bendigo Tectonic Zone of Victoria, Australia.


Novo's key project area in the Pilbara is the Egina Gold Camp, where De Grey Mining (ASX: DEG) is farming-in to form a JV at the Becher Project and surrounding tenements through exploration expenditure of A\$25 million within 4 years for a 50% interest. The Becher Project has similar geological characteristics as De Grey's 12.7 Moz Hemi Project[#]. Novo is also advancing gold exploration south of Becher in the Egina Gold Camp, part of the Croydon JV (Novo 70%: Creasy Group 30%). Novo continues to undertake early-stage exploration elsewhere across its Pilbara tenement portfolio.

Novo has also formed a lithium joint venture with SQM in the Pilbara which provides shareholder exposure to battery metals.

Novo has recently strengthened its high-quality, Australian based exploration portfolio by adding the TechGen John Bull Gold Project in the New England Orogen of NSW, and Manhattan Tibooburra Gold Project in the Albert Goldfields in northwestern NSW. Both projects demonstrate prospectivity for significant discovery and resource definition and align with Novo's strategy of identifying and exploring projects with > 1 Moz Au potential. These high-grade gold projects compliment the landholding consolidation that forms the Toolunga Project in the Onslow District in Western Australia.

Novo has a significant investment portfolio and a disciplined program in place to identify value accretive opportunities that will build further value for shareholders.

Please refer to Novo's website for further information including the latest corporate presentation.

*An Exploration Target as defined in the JORC Code (2012) is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, quoted as a range of tonnes and a range of grade (or quality), relates to mineralisation for which there has been insufficient exploration to estimate a Mineral Resource. Accordingly, these figures are not Mineral Resource or Ore Reserve estimates as defined in the JORC Code (2012). The potential quantities and grades referred to above are conceptual in nature and there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. These figures are based on the interpreted continuity of mineralisation and projection into unexplored ground often around historical workings. The Exploration Target has been prepared in accordance with the JORC Code (2012). The Tonnage range for the exploration target is 15Mt to 2.1Mt, the Grade range is 6.6g/t Au to 8.4g/t Au and the Ounces range from 320koz Au to 570 koz Au. The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcement released on DS features and that all material assumptions and technical parameters underpinning the estimates in the original market announcement released or AD S announcement released or S 70 koz Au. The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the original market announcement and that all material assumptions and technical parameters underpinning the estimates of *Disclosure for Mineral Projects*, responsible for, and having reviewed and approved, the technical information relating to the Exploration Target. Dr Doyle is Novo's Exploration and Dr Echnical Advisor to Novo.

#Refer to De Grey's ASX Announcement, Hemi Gold Project mineral Resource Estimate (MRE) 2024, dated 14 November 2024. No assurance can be given that a similar (or any) commercially viable mineral deposit will be determined at Novo's Pilbara Projects.

Au (ppb	Height (m)	Northing (m)	Easting (m)	Year	Sample Type	Sample ID
20	191	6,725,360	584,379	2025	Soil	K00003
117	185	6,725,360	584,419	2025	Soil	K00005
291	185	6,725,359	584,440	2025	Soil	K00006
22	184	6,725,360	584,460	2025	Soil	K00007
15	189	6,725,359	584,559	2025	Soil	K00012
18	192	6,725,400	584,500	2025	Soil	K00023
29	192	6,725,399	584,441	2025	Soil	K00026
299	192	6,725,398	584,418	2025	Soil	K00020
38	192	6,725,400	584,401	2025	Soil	K00027 K00028
30	190	6.725.400	584,380	2025	Soil	K00028 K00029
<u> </u>		1 1	1	2025		
	189	6,725,400	584,359		Soil	K00030
24	188	6,725,400	584,339	2025	Soil	K00031
23	190	6,725,480	584,400	2025	Soil	K00033
39	189	6,725,481	584,378	2025	Soil	K00034
31	188	6,725,479	584,360	2025	Soil	K00036
226	189	6,725,480	584,340	2025	Soil	K00037
40	188	6,725,480	584,320	2025	Soil	K00038
72	187	6,725,479	584,300	2025	Soil	K00039
21	187	6,725,479	584,279	2025	Soil	K00040
19	187	6,725,480	584,260	2025	Soil	K00041
21	187	6,725,479	584,238	2025	Soil	K00042
16	185	6,725,439	584,200	2025	Soil	K00046
137	190	6,725,439	584,320	2025	Soil	K00052
22	191	6.725.440	584,340	2025	Soil	K00053
24	190	6,725,439	584,361	2025	Soil	K00054
31	191	6,725,440	584,381	2025	Soil	K00055
154	192	6,725,440	584,401	2025	Soil	K00055
29	192	6,725,439	584,420	2025	Soil	K00058 K00057
32	195	6,725,440	584,441	2025	Soil	K00058
101	192	6,725,479	584,417	2025	Soil	K00075
178	191	6,725,519	584,440	2025	Soil	K00076
1,585	186	6,725,520	584,420	2025	Soil	K00077
848	185	6,725,520	584,406	2025	Soil	K00078
80	183	6,725,520	584,380	2025	Soil	K00079
19	179	6,725,520	584,240	2025	Soil	K00083
36	178	6,725,520	584,220	2025	Soil	K00084
15	177	6,725,560	584,321	2025	Soil	K00089
50	179	6,725,559	584,340	2025	Soil	K00090
286	180	6,725,558	584,360	2025	Soil	K00091
16	183	6,725,559	584,460	2025	Soil	K00093
35	183	6,725,559	584,480	2025	Soil	K00094
18	185	6,725,519	584,460	2025	Soil	K00102
112	185	6,725,640	584,301	2025	Soil	K00103
254	185	6,725,639	584,320	2025	Soil	K00104
188	186	6,725,640	584,341	2025	Soil	K00105
43	185	6,725,640	584,360	2025	Soil	K00105
16	185	6,725,639	584,400	2025	Soil	K00108
20	189	6,725,599	584,500	2025	Soil	K00108
<u> </u>	189	6,725,600	584,361	2025	Soil	K00113 K00122
-		1 1	1			
64	185	6,725,599	584,336	2025	Soil	K00123
21	190	6,725,600	584,321	2025	Soil	K00124
18	190	6,725,600	584,300	2025	Soil	K00125
62	189	6,725,599	584,280	2025	Soil	K00126
492	189	6,725,599	584,260	2025	Soil	K00127
38	188	6,725,600	584,240	2025	Soil	K00128
36	187	6,725,599	584,220	2025	Soil	K00129
15	187	6,725,639	584,220	2025	Soil	K00130
18	189	6,725,640	584,239	2025	Soil	K00131
29	191	6,725,640	584,260	2025	Soil	K00132
	190	6,725,640	584,281	2025	Soil	K00133
25	190					
25 31	190	6,725,680	584,439	2025	Soil	K00136

Appendix 1 – Table of Soil Sample Results, GDA94 z54

Sample ID	Sample Type	Year	Easting (m)	Northing (m)	Height (m)	Au (ppb)
K00140	Soil	2025	584,361	6,725,680	192	18
K00141	Soil	2025	584,340	6,725,680	192	47
K00142	Soil	2025	584,319	6,725,677	192	1,440
K00143	Soil	2025	584,300	6,725,680	192	45
K00144	Soil	2025	584,276	6,725,679	191	20
K00149	Soil	2025	584,203	6,725,676	187	30
K00152	Soil	2025	584,160	6,725,759	184	17
K00153	Soil	2025	584,180	6,725,761	183	16
K00154	Soil	2025	584,240	6,725,759	182	21
K00155	Soil	2025	584,260	6,725,760	183	47
K00163	Soil	2025	584,420	6,725,760	186	29
K00168	Soil	2025	584,321	6,725,840	187	15
K00172	Soil	2025	584,220	6,725,840	185	23
K00176	Soil	2025	584,140	6,725,839	185	18
K00190	Soil	2025	584,221	6,725,920	187	51
K00223	Soil	2025	584,040	6,726,239	189	20
K00224	Soil	2025	584,060	6,726,240	189	21
K00239	Soil	2025	583,920	6,726,399	191	20
K00241	Soil	2025	583,880	6,726,399	191	25
K00253	Soil	2025	583,900	6,726,559	201	15
K00257	Soil	2025	583,820	6,726,559	205	15
K00258	Soil	2025	583,801	6,726,559	207	51
K00263	Soil	2025	583,701	6,726,560	198	23
K00268	Soil	2025	583,620	6,726,560	197	20
K00269	Soil	2025	583,600	6,726,560	196	24
K00274	Soil	2025	583,521	6,726,559	195	16
K00291	Soil	2025	584,361	6,725,880	189	19
K00306	Soil	2025	584,277	6,725,721	187	17
K00309	Soil	2025	584,340	6,725,720	186	16
K00322	Soil	2025	584,301	6,725,800	182	42
K00324	Soil	2025	584,200	6,725,800	183	22
K00333	Soil	2025	584,119	6,725,880	187	17
K00334	Soil	2025	584,141	6,725,880	186	21
K00338	Soil	2025	584,199	6,725,880	188	18
K00340	Soil	2025	584,239	6,725,880	188	20
K00354	Soil	2025	584,201	6,726,000	197	16
K00360	Soil	2025	583,900	6,726,160	183	15
K00451	Soil	2025	584,402	6,725,319	177	21
K00454	Soil	2025	584,461	6,725,320	179	75
K00455	Soil	2025	584,481	6,725,318	178	28
K00456	Soil	2025	584,500	6,725,320	181	21
K00479	Soil	2025	584,541	6,725,280	181	16
K00482	Soil	2025	584,482	6,725,280	177	19
K00499	Soil	2025	584,481	6,725,240	178	19
K00504	Soil	2025	584,460	6,725,719	190	55
K00506	Soil	2025	584,500	6,725,680	189	15
K00511	Soil	2025	584,520	6,725,599	182	18
K00512	Soil	2025	584,540	6,725,599	183	64
K00514	Soil	2025	584,579	6,725,560	186	17
K00528	Soil	2025	584,660	6,725,400	192	27
K00529	Soil	2025	584,640	6,725,400	193	31
K00539	Soil	2025	584,441	6,725,199	181	20
K00540	Soil	2025	584,461	6,725,200	181	15
K00550	Soil	2025	584,640	6,725,200	191	61
K00551	Soil	2025	584,660	6,725,200	190	16
K00567	Soil	2025	584,660	6,725,040	193	20
K00578	Soil	2025	584,860	6,725,039	190	32
K00601	Soil	2025	584,521	6,725,241	186	27
K00602	Soil	2025	584,541	6,725,240	188	15
K00611	Soil	2025	584,721	6,725,239	193	18
K00613	Soil	2025	584,425	6,725,160	186	22
1/00/1/	Soil	2025	584,440	6,725,160	186	18
K00614						
K00614 K00627	Soil	2025	584,660	6,725,161	187	26

Sample ID	Sample Type	Year	Easting (m)	Northing (m)	Height (m)	Au (ppb)
K00662	Soil	2025	584,680	6,725,080	185	32
K00663	Soil	2025	584,700	6,725,080	183	19
K00697	Soil	2025	583,520	6,726,720	197	16
K00708	Soil	2025	584,681	6,724,959	178	21
K00744	Soil	2025	584,701	6,724,802	178	26
K00762	Soil	2025	583,480	6,726,641	191	15
K00768	Soil	2025	583,580	6,726,640	192	24
K00772	Soil	2025	583,641	6,726,640	194	21
K00773	Soil	2025	583,661	6,726,640	196	18
K00800	Soil	2025	583,701	6,726,800	206	16
K00814	Soil	2025	583,599	6,726,960	189	19
K00846	Soil	2025	583,540	6,726,680	199	16
K00875	Soil	2025	583,740	6,726,881	201	15
K00888	Soil	2025	583,501	6,726,880	197	18
K00891	Soil	2025	583,442	6,726,880	193	48
K00896	Soil	2025	583,360	6,726,880	191	37
K00905	Soil	2025	583,620	6,726,600	204	22
K00953	Soil	2025	583,660	6,726,800	207	18
K00993	Soil	2025	583,440	6,726,840	193	18
K00994	Soil	2025	583,460	6,726,840	193	132

Appendix 2 – Table of Rock Sample Results, GDA94 z54

Sample ID	Sample Type	Year	Easting (m)	Northing (m)	Height (m)	Au g/t
R08501	Rock Chip	2025	584,630	6,725,239	188	0.01
R08502	Rock Chip	2025	584,207	6,725,875	185	0.01
R08503	Rock Chip	2025	584,136	6,726,016	186	<0.01
R08504	Rock Chip	2025	584,147	6,726,032	186	<0.01
R08505	Rock Chip	2025	583,959	6,726,024	182	<0.01
R08506	Rock Chip	2025	583,993	6,726,086	183	0.01
R08507	Rock Chip	2025	583,769	6,726,607	198	<0.01
R08508	Rock Chip	2025	583,701	6,726,775	192	<0.01
R08509	Mullock Grab	2025	583,636	6,726,526	193	0.01
R08510	Rock Chip	2025	583,637	6,726,527	192	0.03
R08512	Rock Chip	2025	583,652	6,726,499	193	0.01
R08513	Rock Chip	2025	583,645	6,726,507	192	0.01
R08514	Rock Chip	2025	583,538	6,726,696	192	<0.01
R08516	Rock Chip	2025	583,471	6,726,830	190	0.08
R08517	Rock Chip	2025	583,412	6,726,966	187	0.02
R08518	Rock Chip	2025	584,942	6,726,444	203	<0.01
R08519	Rock Chip	2025	584,886	6,726,665	210	0.01
R08520	Rock Chip	2025	584,269	6,725,573	183	0.04
R08521	Rock Chip	2025	584,271	6,725,573	182	0.02
R08522	Rock Chip	2025	584,274	6,725,576	183	0.02
R08523	Rock Chip	2025	584,254	6,725,619	182	0.01
R08524	Mullock Grab	2025	584,297	6,725,573	185	0.01
R08525	Rock Chip	2025	584,299	6,725,575	184	0.03
R08527	Mullock Grab	2025	584,285	6,725,724	185	0.02
R08528	Rock Chip	2025	584,292	6,725,735	183	0.01
R08529	Rock Chip	2025	584,284	6,725,730	183	0.01
R08530	Rock Chip	2025	584,286	6,725,731	183	0.03
R08531	Mullock Grab	2025	584,309	6,725,703	183	89.6
R08532	Mullock Grab	2025	584,313	6,725,690	184	41.9
R08533	Mullock Grab	2025	584,327	6,725,670	184	1.03
R08534	Mullock Grab	2025	584,330	6,725,669	184	1.7
R08536	Rock Chip	2025	584,345	6,725,654	184	7.72
R08537	Rock Chip	2025	584,351	6,725,649	183	4.01
R08538	Rock Chip	2025	584,356	6,725,603	187	3.88
R08539	Mullock Grab	2025	584,370	6,725,586	187	2.38
R08540	Rock Chip	2025	584,366	6,725,588	185	1.84
R08541	Rock Chip	2025	584,364	6,725,588	185	1.5
R08542	Rock Chip	2025	584,361	6,725,588	186	0.84
R08543	Rock Chip	2025	584,362	6,725,586	186	0.15
R08544	Rock Chip	2025	584,376	6,725,568	184	4.79

Sample ID	Sample Type	Year	Easting (m)	Northing (m)	Height (m)	Au g/t
R08545	Rock Chip	2025	584,376	6,725,568	184	0.24
R08546	Rock Chip	2025	584,375	6,725,569	184	2.5
R08547	Rock Chip	2025	584,375	6,725,569	184	0.14
R08548	Rock Chip	2025	584,375	6,725,569	184	0.45
R08549	Rock Chip	2025	584,373	6,725,569	184	31.4
R08551	Rock Chip	2025	584,377	6,725,568	183	0.48
R08552	Rock Chip	2025	584,370	6,725,575	183	0.33
R08553	Rock Chip	2025	584,369	6,725,575	183	10.4
R08554	Rock Chip	2025	584,368	6,725,574	183	0.3
R08555	Rock Chip	2025	584,368	6,725,573	183	0.57
R08556	Mullock Grab	2025	584,468	6,725,586	186	0.08
R08557	Rock Chip	2025	584,476	6,725,589	187	0.04
R08558	Rock Chip	2025	584,473	6,725,587	187	0.03
R08559	Rock Chip	2025	584,401	6,725,519	188	4.91
R08561	Rock Chip	2025	584,400	6,725,518	188	0.44
R08562	Rock Chip	2025	584,400	6,725,518	188	2.32
R08563	Rock Chip	2025	584,407	6,725,506	198	0.09
R08564	Rock Chip	2025	584,399	6,725,518	188	0.12
R08565	Rock Chip	2025	584,490	6,725,541	199	0.02
R08566	Mullock Grab	2025	584,432	6,725,455	199	0.03
R08567	Rock Chip	2025	584,652	6,725,152	202	0.01
R08568	Rock Chip	2025	584,654	6,725,147	200	0.02
R08569	Rock Chip	2025	584,663	6,725,136	201	0.01
R08570	Rock Chip	2025	584,673	6,725,111	199	<0.01
R08571	Rock Chip	2025	584,439	6,725,717	194	0.01
R08572	Rock Chip	2025	584,477	6,725,594	187	0.02
R08573	Rock Chip	2025	584,277	6,725,409	182	0.02
R08574	Rock Chip	2025	584,347	6,725,438	185	<0.01
R08575	Mullock Grab	2025	584,416	6,725,394	186	0.19
R08576	Mullock Grab	2025	584,474	6,725,305	185	0.23
R08577	Rock Chip	2025	584,508	6,725,474	192	<0.01
R08578	Rock Chip	2025	584,230	6,725,586	188	<0.01
R08579	Rock Chip	2025	584,755	6,724,894	190	<0.01
R08580	Rock Chip	2025	584,728	6,724,883	189	<0.01
R08601	Rock Chip	2025	585,409	6,725,033	190	<0.01
R08602	Rock Chip	2025	585,433	6,724,539	171	<0.01

JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Rock chips samples were collected by grab sampling 1 – 3 kg of material. Sample sites were selected based to be representative on the lithology sampled, and the same sampling technique was employed at each sample site where possible. Mullock grab samples were collected by grab sampling 1 – 3 kg of material from mullock dumps adjacent to historical mining activities. These are to provide some indication of potential grades obtained from historic workings and are not representative of in situ material. Soil samples of 200 g were collected from small pits 10 cm – 40 cm in depth and sieved to <80# mesh. A 30 g aliquot was digested via fire assay and analysed via AAS finish.
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit, or other type, whether core is oriented and if so, by what method, etc). 	• No drilling was undertaken.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• No drilling was undertaken.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 No drilling was undertaken. Rock chip samples are geologically logged with quantitative and qualitative data collected including a description of lithology, vein type and vein densities, and alteration.

DV	0

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Rock chip samples were dried, crushed and pulverised with 85% passing < 75 µm (PUL-23) by ALS to create a 50 g charge, then assayed for Au by fire assay Au-AA26. Soil samples required no preparation and were analysed for Au with a 30 g aliquot digested via fire assay and analysed via AAS finish. The sampling techniques and sample sizes are considered appropriate for this style of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (if lack of bias) and precision have been established. 	 The rock chip sample assay methodology is considered appropriate for the style of mineralisation tested. The method includes inserting 2 CRM standards and 2 blanks per 100 samples or at least one of each per sample submission. The soil sample assay methodology has low level detection for gold and multi-elements and is considered appropriate for soil geochemistry for outcropping or near surface mineralisation. The method includes insertion of at least 2 blanks 2 CRM standards and 4 field duplicates per 100 samples. No QAQC issues were detected.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Primary data was collected in the field and stored using database compatible excel templates which were then forwarded to the database manager email for upload to the Geobank (v2022.5) database, buffered through a validation portal that ensures code and primary record compliance. Geobank is a front-end UX/UI tender software platform (developed and sold by Micromine) attached to a SQL v15.1 server. Assay data was loaded from lab certificates received from the registered laboratory by an internal database manager or external database consultant, and industry-standard audit trails and chain-of-custody was adhered to. Verification included checking the data against original logs and utilising laboratory certificates. No adjustments of the assay data were made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 All surface sample locations were recorded by hand-held GPS using the GDA 2020 zone 54 co-ordinate system.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve 	 Limited rock samples are taken and are indicative of potential grade tenor. These do not necessarily represent or imply any continuity or scale potential. Grab samples from mullock dumps are not representative of in situ mineralisation and are only used as a guide as to potential historical activity.
	 estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Soil samples were taken on a nominal grid of 20 m by 40 m orientated to be perpendicular to the interpreted strike of the system.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The soil sample grid was orientated to best intersect the lithological and structural trends at right angles. Rock samples were taken across features with geological data recorded to best reflect unbiased sampling of possible mineralised structures.
Sample security	• The measures taken to ensure sample security.	• All samples are stored and managed on site by internal staff. Samples are then transported by reputable companies to a registered laboratory where they are stored in a locked facility before being tracked and processed through the preparation and analysis system at the laboratory.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits have been undertaken.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The Tibooburra project comprises tenements EL7437, EL8688, EL8691, EL9092, EL9094 and EL9202 and are held by Awati Resources Pty Ltd, a wholly owned subsidiary of Manhattan Novo is required to spend \$0.5M within the first earn-in period of 12 months, and \$1M within the second earn-in period of 12 months to earn the option to form a 70 / 30 unincorporated joint venture with Awati, in which Awati is free-carried until the completion of a positive definitive feasibility study³ The tenement package is covered by two separate Native Title Claims. The Malyangapa Combined Proceedings (NC2022/0002) and the Wongkumara people (QC2008/003). The region is administered by the Tibooburra LALC based in Tibooburra The tenements are currently in good standing and there are no known impediments.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Proto Resources and Investments completed an RC drilling program at the Pioneer and Phoenix project in 2006. Meteoric Resources completed RAB and Aircore drilling at the New Bendigo, Phoenix, Pioneer and The Kink prospects in 2011 and 2012. RAB holes at New Bendigo returned very strong gold anomalous results that highlighted the potential for significant gold mineralisation at the New Bendigo Prospect. Meteoric Resources also completed soil, stream and rock chip sampling across selected areas of the tenure. Awati Resources completed diamond drilling in 2016 at New Bendigo as part of the NSW department Co-operative Drilling Program and followed up with an RC drilling program in 2018 confirming the gold anomalies in the 2011-2012 RAB drill program. Manhattan Corporation completed additional RC drill programs at New Bendigo, Clone, Phoenix and Pioneer, identifying a substantial high-order gold anomaly at the Clone prospect
Geology	• Deposit type, geological setting, and style of mineralisation.	The Tibooburra Project covers the Tibooburra and Koonenberry Greenstone Belts. The district is widely regarded as the northern extension of the Victorian Goldfields. The project is located at the boundary between two major orogens (Delamarian and Thomson) and mineralisation consists of high-grade laminated quartz-sulphide veins hosted within Cambrian sedimentary rocks intruded by Devonian granites within a tightly folded and faulted domain.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including Easting and northing of the drill hole collar, Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Significant soil sample results that were the basis of the soil contours are listed in Appendix 1. All rock sample results collected by Novo are listed in Appendix 2.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	• No drilling was undertaken.

Criteria	JORC Code explanation	Commentary
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 No drilling was undertaken. Rock sample results are indicative in nature and, whilst representatively sampling the target lithology, do not contain any width or length information other than a qualitative description of the target.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• Refer to the body of the release for appropriate maps and diagrams.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Due to the large number of soil samples, not all results are reported in Appendix 1. All results greater than 15 ppb are reported, comprising all samples used to generate anomalous soil contours. All rock sample results are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No additional data.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Refer to the body of the release. Novo intends to complete a 2,000m RC drilling program to test the high-grade mineralisation at Clone at depth, along strike and down plunge.

No Section 3 or 4 report as no Mineral Resources or Ore Reserves are reported in this Appendix

³ Refer to ASX news release by Novo Resources dated 16/12/2024 – Novo Strengthens Portfolio with Two High-Grade Gold Projects in NSW, Australia