

PILBARA EXPLORATION UPDATE HIGH-GRADE GOLD AND ANTIMONY TARGETS

HIGHLIGHTS

- Novo has advanced Pilbara high-grade gold and gold-antimony prospects which will be the focus for exploration and drilling in H2 2025.
- Exploration at the Sherlock Crossing Au-Sb prospect has defined a coherent **1.5 km antimony in soil anomaly** (at > 15 ppm Sb), with gold anomalism up to **85 ppb Au,** with all heritage and compliance approvals now in place for exploration drilling.
- At the Southeast Wyloo Au-Sb-Ag-Cu Project, plans are in place to complete mapping and rock chip sampling in preparation for drill program planning.
- Heritage access approval has been obtained for low-impact exploration work at the Teichman gold prospect in the northern Egina Gold Camp, within the Yandeyarra Reserve. High-grade gold has been defined during historic rock sampling programs in the area.
- Results from reconnaisance aircore (AC) drilling at Balla Balla delineated broad zones of low-level gold anomalism (peak 0.114 ppm Au) along the Sholl Shear. Significant results from multielement assays of bottom hole samples and select drill holes include 96.8 ppm Ag, 182 ppm Sb, 353 ppm Cu, and 71.6 ppm Bi.
- Northern Star Resources Limited (ASX: NST), Novo's new partner in the Egina Farm-in/Joint Venture arrangement (following its acquisition of De Grey Mining) has commenced reviewing previous data in planning for future exploration programs.

Commenting on the Company's Pilbara exploration activity, Mike Spreadborough, Executive Co-Chairman and Acting Chief Executive Officer, said "We have been methodical in our assessment of advanced gold and antimony targets over the first half of 2025, which has set Novo up for a busy second half of exploration.

"We have identified several compelling targets including the Sherlock Crossing prospect, where our highly experienced geological team has defined a 1.5km antimony anomaly, which we will be a priority for drilling in the short term.

Importantly, the price of gold continues to strengthen and global interest in antimony continues to grow rapidly, which places Novo in an exciting position as we execute on these programs and complete drilling over the coming months.

"Furthermore, Novo is pleased that Northern Star Resources, Novo's new partner in the Egina Farm-in and Joint Venture arrangement (following the completion of its acquisition of De Grey Mining), has commenced reviewing key data for future exploration work. The Egina JV area covers a large and strategic land position in the prospective Mallina Basin and importantly, the Egina Gold Project tenements are highly prospective for significant intrusion related deposits and share similar attributes to the nearby Hemi deposit."

Novo Resources Corp Australian Office Level 3, 46 Ventnor Avenue, West Perth WA 6005 +61 8 6400 6100 **Mailing Address** PO Box 566 West Perth, WA 6872

PERTH, WESTERN AUSTRALIA - Novo Resources Corp. (Novo or the **Company**) (ASX: NVO) (TSX: NVO) (OTCQX: NSRPF) is pleased to provide an update on its Pilbara-wide exploration completed during H1 2025, including the Balla Balla Gold Project AC drill program. In the Pilbara the focus for the second half will be on high-grade gold and gold-antimony exploration projects.

Novo has also been actively exploring its New South Wales projects, undertaking RC drilling at the Tibooburra Gold Project (results pending) and preparation work, including mapping and geochemical sampling, at the John Bull Gold Project. Drilling is expected to commence at John Bull in early Q3 2025 (weather and access approval permitting).

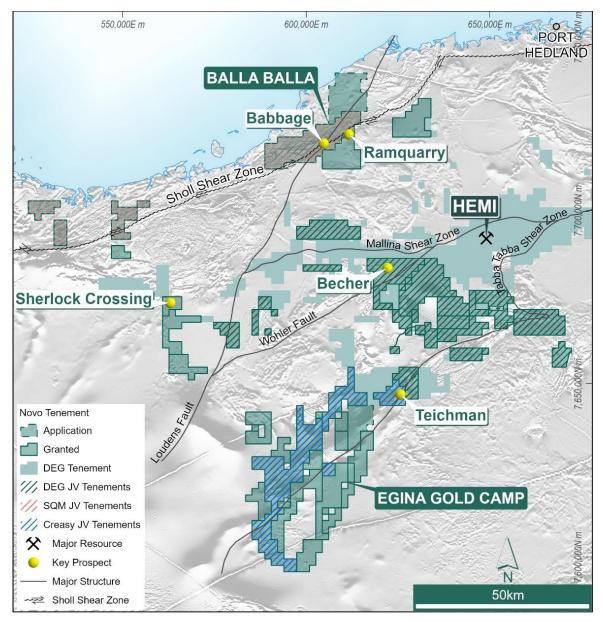


Figure 1: Novo Tenure showing the Egina Gold Camp, Balla Balla Gold Project, and gold prospects.

PILBARA EXPLORATION PORTFOLIO

Balla Balla Gold Project

Balla Balla is an early-stage exploration project centred on the **Sholl Shear Zone** (*Figure 1*)¹. In April 2025, Novo completed a maiden AC program testing several prospects over a 10 km trend, targeting the Sholl Shear Zone and interpreted splay faults under shallow cover.

A total of 187 AC holes for 5,996 m were completed on regionally spaced lines varying from 640 m to 2.8 km apart (*Figure 2*). Hole depths range from 5 m to 79 m with cover varying between 5 m to 35 m depth (average 22 m). Samples were collected as 3 m composites for the entire hole and assayed for gold using fire-assay, and a bottom of hole (BOH) sample was taken and assayed for gold and a 52-multielement suite using fire assay and four-acid digest. Seven holes have been selected with intense sulphide mineralisation, quartz veining or strong alteration for multi-element assaying with results from two holes pending.

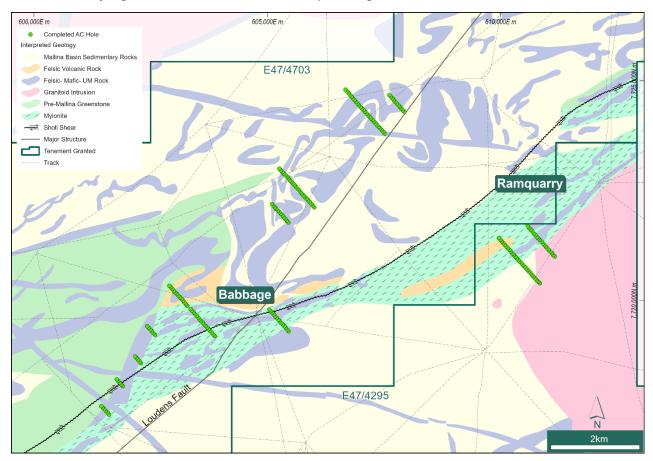
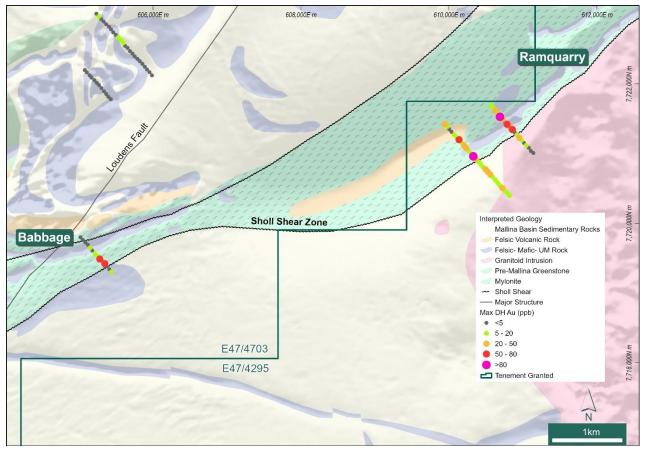


Figure 2: AC collar locations on interpreted regional geology and structure

Peak results from broad zones of low-level anomalism associated with the Sholl Shear includes 114 ppb Au (*Figure 3*). However, numerous additional anomalies have been defined by BOH and select hole multielement assay. These include:


- 1 m @ 96.8 ppm Ag and 8.1 ppm Sb from 28 m in YUA0113 (BOH sample)
- 1 m @ 182 ppm Sb and 6.72 ppm Ag from 44 m in YUA0054 (BOH sample multielement assay results for entire hole pending)
- Anomalous Bi, Sb and Te from 57 m to 78 m in YUA0161, with peak results of **71.6 ppm Bi**, 47.3 ppm Sb, and 6.23 ppm Te (multielement assay for entire hole)
- Anomalous Mo, Sb, Au, Te from 45 m to 74 m in YUA0162, with peak results of 70 ppb Au, 14.50 ppm Bi, 99.7 ppm Mo, 11.0 ppm Sb and 11.8 ppm Te (multielement assay for entire hole)
- 1 m @ 299 ppm Cu and 24.7 ppm Sb from 43 m in YUA0182 (BOH sample)
- 12 m @ 277 ppm Cu, 303 ppm Zn and 11.5 ppm Sb from 30 m in YUA0185 (multielement assay for entire hole)

Refer to Appendix 1 for collar details and peak gold results. Refer to Appendix 2 for end of hole and downhole multielement assays.

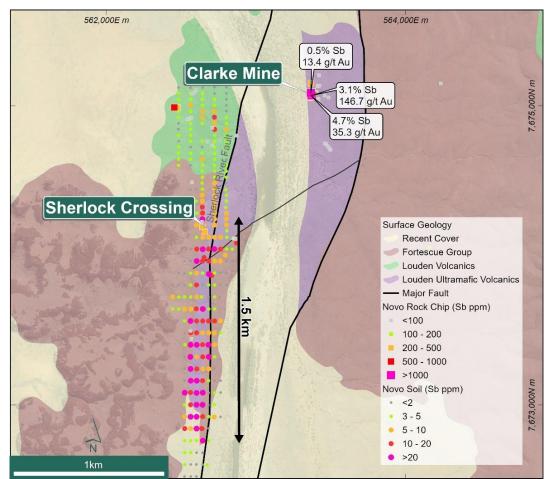
Peak Au-Ag-Bi-Sb-Cu-Mo is present at **Ramquarry and south Babbage along the Sholl Shear** and are related to sub-massive pyrite mineralisation, strong silica-chlorite alteration an/or zones of intense quartz veining, indicating significant hydrothermal activity. **Peak silver values** are related to an interpreted fold axis in regional magnetics and porphyritic mafic intrusion.

Further work, once all results are returned, will include assaying full holes for the multielement assay suite in anomalous areas, spectral imaging on selected intervals to determine alteration mineralogy and rock composition, and petrology on selected samples. After the full results are returned and interpreted along with other high-level studies, follow-up and extensional drilling will be planned if warranted.

Figure 3: AC collar locations over regional geological interpretation and airborne magnetics, showing maximum downhole gold values

Sherlock Crossing

Novo completed a soil sampling program to extend coverage of an antimony in soil anomaly and high order stream sediment anomaly, to the southwest of the Sherlock Crossing historic workings area (*Figure 4*). Samples were collected on a 40 m x 80 m grid.


Results define a strong and coherent antimony anomaly extending over 1.5 km in strike length, and a width of 200 m. Peak soil sample results include **85 ppb Au and 48.3 ppm Sb** (*Figure 4*). **Anomalous antimony** occurs in a strongly altered and sheared ultramafic unit which sporadically outcrops **over 2.3 km strike**, trending under colluvial cover to the south. Rock samples from the highly sheared and altered ultramafic, returned results of up to 0.22% Sb without significant quartz veining.

Refer to Appendix 3 for all soil sample results, and Appendix 4 for all rock sample results.

All heritage and compliance approvals have been obtained to enable a maiden RC drilling program adjacent to the historical Sherlock Crossing workings to test promising gold and antimony mineralisation, where targeted **rock chip sampling yielded grades of up to 4.7% Sb** and 146.7 g/t Au².

Drilling is planned for H2 2025. Meanwhile, detailed mapping and sampling will continue to assist in targeting the core of the soil anomaly to the southwest.

Figure 4: Sherlock Crossing, showing extended soil anomaly > 15 ppm Sb to the SW of the proposed first pass drilling area at the Clarke Mine²

Egina Gold Camp – Egina Earn-in/JV (Northern Star earning a 50% interest)

Northern Star Resources Limited (ASX: NST) recently finalised its acquisition of De Grey Mining (ASX: DEG). The NST group has commenced reviewing previous data in planning for future exploration programs in **the Becher and surrounding area**.

In June 2023, Novo entered into an earn-in and joint venture agreement with De Grey for the Company's **Becher Project and adjacent tenements within the Egina Gold Camp**. De Grey exceeded the A\$7 million minimum expenditure commitment under the earn-in in September 2024 and is required to spend a further A\$18 million by June 30, 2027, to earn a 50% interest in the Becher Project at which time an unincorporated joint venture would be established.³

Egina is located near the 13.6 Moz Hemi Gold Project⁴. No assurance can be given that a similar (or any) commercially viable mineral deposit will be determined at Novo's Egina Project.

Egina Gold Camp - Tabba Tabba Shear Corridor

Exploration of the Tabba Tabba Shear Corridor, part of Novo's Egina Gold Camp, progressed in 2024, with first pass surface geochemistry and mapping now covering the central part of the Corridor. Novo has prioritised obtaining access to the **Teichman** prospect (*Figure 5*), located within the Yandeyarra Reserve⁵, where previous explorers obtained high-grade surface results from several prospects over 2.3 km strike, including **25.5 g/t Au and 32.3 g/t Au from rock samples**⁶.

Approval to carry out low-impact exploration activities on parts of Novo's tenements within the Yandeyarra Aboriginal Reserve has now been achieved. The proposed work will comprise up to ten days of mapping and targeted rock sampling. Only limited modern exploration has been undertaken in the Yandeyarra Reserve.

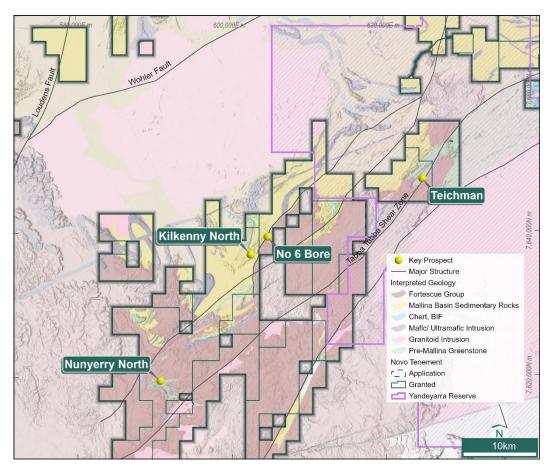


Figure 5: Main prospects of the Tabba Tabba Shear Corridor

Southeast Wyloo

During H2 2024, Novo completed a review of the Sb-Au potential across its Pilbara ground holding. In addition to Sherlock Crossing, Southeast Wyloo was also ranked highly for antimony potential and includes two, 2 km-strike high-order antimony (± gold) stream sediment anomalies, where reconnaissance rock chip sampling completed in mid-2023 yielded peak results of **387 g/t Ag, 2.4% Cu, 0.38%, and 0.52 g/t Au**, 5.0% Pb and 1.6% Zn⁷.

Plans are in place to complete mapping and rock chip sampling during H2 2025 in preparation for drill program planning.

Authorised for release by the Board of Directors.

CONTACT

Investors: Mike Spreadborough +61 8 6400 6100 info@novoresources.com North American Queries: Leo Karabelas +1 416 543 3120 leo@novoresources.com **Media:** Cameron Gilenko +61 466 984 953 cameron.gilenko@sodali.com

QP STATEMENT

Mrs. Karen (Kas) De Luca (MAIG), is the qualified person, as defined under National Instrument 43-101 *Standards of Disclosure for Mineral Projects*, responsible for, and having reviewed and approved, the technical information contained in this news release. Mrs De Luca is Novo's General Manager Exploration.

JORC COMPLIANCE STATEMENT

New Exploration Results

The information in this news release that relates to exploration results at Novo's Pilbara tenure is based on information compiled by Mrs De Luca, who is a full-time employee of Novo Resources Corp. Mrs De Luca is a Competent Person who is a member of the Australian Institute of Geoscientists. Mrs De Luca has sufficient experience that is relevant to the style of mineralisation and the type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mrs De Luca consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Previous Exploration Results

The information in this news release that relates to previously reported exploration results at Novo's Pilbara tenure is extracted from:

- a) Novo's ASX announcement entitled Pilbara Exploration Update released to ASX on 10 December 2024;
- b) Novo's ASX announcement entitled Nunyerry North High-Grade Gold Zone Extended released to ASX on 30 August 2024; and
- c) Novo's ASX announcement entitled Evaluation of Pilbara Antimony-Gold Potential Generates Positive Results released to ASX on 12 September 2024,

each of which is available to view at <u>www.asx.com.au</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the competent persons findings are presented have not been materially modified from the original market announcements.

FORWARD-LOOKING STATEMENTS

Some statements in this news release may contain "forward-looking statements" within the meaning of Canadian and Australian securities law and regulations. In this news release, such statements include but are not limited to planned exploration activities and the timing of such. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors include, without limitation, customary risks of the resource industry and the risk factors identified in Novo's annual information form for the year ended December 31, 2024 (which is available under Novo's profile on SEDAR+ at <u>www.sedarplus.ca</u> and at <u>www.asx.com.au</u>) in the Company's prospectus dated 2 August 2023 which is available at www.asx.com.au. Forward-looking statements speak only as of the date those statements are made. Except as required by applicable law, Novo assumes no obligation to update or to publicly announce the results of any change to any forward-looking statement contained or incorporated by reference herein to reflect actual results, future events or developments, changes in assumptions or changes in other factors affecting the forward-looking statements. If Novo updates any forward-looking statement(s), no inference should be drawn that the Company will make additional updates with respect to those or other forward-looking statements.

¹ Refer to Novo's ASX announcement dated <u>20 March 2025</u> - Aircore drilling to commence at Balla Balla.

² Refer to Novo's ASX announcement dated 10 December 2024 - Pilbara Exploration Update

³ Refer to Novo's ASX announcement dated <u>10 October 2024</u> – De Grey reaches minimum spend at Novo's Egina Gold Project

7 Refer to Novo's ASX announcement dated <u>12 September 2024</u> – Evaluation of Pilbara Antimony-Gold Potential Generates Positive Results

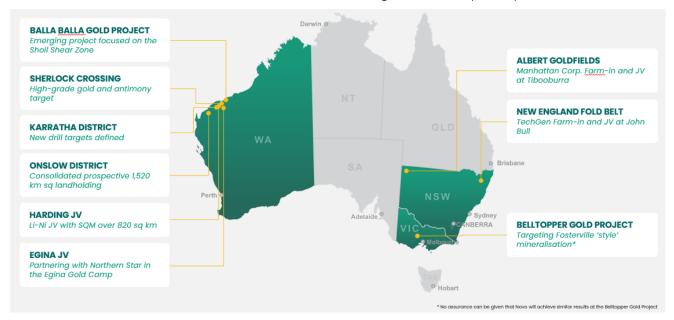
⁴ Refer to De Grey's ASX Announcement, Hemi Gold Project mineral Resource Estimate (MRE) 2024, dated 14 November 2024

⁵ Refer to Novo's ASX announcement dated 10 December 2024 - Pilbara Exploration Update

⁶ Refer to Novo's ASX announcement dated <u>30 August 2024</u> – Nunyerry North High-Grade Gold Zone extended and Egina Gold Camp exploration targets advanced

ABOUT NOVO

Novo is an Australian based gold explorer listed on the ASX and the TSX focussed on discovering standalone gold and copper projects with > 1 Moz development potential. Novo is an innovative gold explorer with a significant land package covering approximately 5,500 square kilometres in the Pilbara region of Western Australia, along with the 22 square kilometre Belltopper project in the Bendigo Tectonic Zone of Victoria, Australia. In addition to the above, Novo is part of two prospective farm in agreements in New South Wales.


Novo's key project area in the Pilbara is the Egina Gold Camp, where Northern Star Resources Limited (ASX: NST) is farming-in to form a JV at the Becher Project and surrounding tenements through exploration expenditure of A\$25 million within 4 years for a 50% interest. The Becher Project has similar geological characteristics as Northern Star's 12.7 Moz Hemi Project[#]. Novo is also advancing gold exploration south of Becher in the Egina Gold Camp, part of the Croydon JV (Novo 70%: Creasy Group 30%). Novo continues to undertake early-stage exploration elsewhere across its Pilbara tenement portfolio.

Novo has also formed a lithium joint venture with SQM in the Pilbara which provides shareholder exposure to battery metals.

Novo has recently strengthened its high-quality, Australian based exploration portfolio by adding the TechGen John Bull Gold Project in the New England Orogen of NSW, and Manhattan Tibooburra Gold Project in the Albert Goldfields in northwestern NSW. Both projects demonstrate prospectivity for significant discovery and resource definition and align with Novo's strategy of identifying and exploring projects with > 1 Moz Au potential. These high-grade gold projects compliment the landholding consolidation that forms the Toolunga Project in the Onslow District in Western Australia.

Novo has a significant investment portfolio and a disciplined program in place to identify value accretive opportunities that will build further value for shareholders.

Please refer to Novo's website for further information including the latest corporate presentation.

#Refer to De Grey's ASX Announcement, Hemi Gold Project mineral Resource Estimate (MRE) 2024, dated 14 November 2024. No assurance can be given that a similar (or any) commercially viable mineral deposit will be determined at Novo's Becher Project.

Mailing Address PO Box 566 West Perth, WA 6872

Appendix 1: Collar locations for Balla Balla AC program with peak downhole Au (ppb) listed. All coordinates are in GDA2020, zone 50.

Hole ID	Туре	Depth	Easting (m)	Northing (m)	Dip	Azimuth (grid)	Peak Au (ppb)
YUA0001	AC	21	601,556	7,717,479	-60	140	3
YUA0002	AC	22	601,525	7,717,523	-60	140	4
YUA0003	AC	21	601,488	7,717,559	-60	140	2
YUA0004	AC	13	601,457	7,717,601	-60	140	2
YUA0005	AC	14	601,423	7,717,640	-60	140]
YUA0006	AC	16	601,392	7,717,673	-60	140]
YUA0007	AC	13	601,853	7,718,124	-60	140	1
YUA0008	AC	15	601,821	7,718,161	-60	140	1
YUA0009	AC	13	601,787	7,718,203	-60	140	4
YUA0010	AC	7	601,754	7,718,243	-60	140	-1
YUA0011	AC	5	601,725	7,718,279	-60	140	1
YUA0012	AC	42	602,246	7,718,644	-60	140	19
YUA0013	AC	36	602,217	7,718,684	-60	140	3
YUA0014	AC	17	602,181	7,718,723	-60	140	5
YUA0015	AC	16	602,153	7,718,762	-60	140	10
YUA0016	AC	16	602,122	7,718,798	-60	140	3
YUA0017	AC	21	602,549	7,719,288	-60	140	4
YUA0018	AC	21	602,515	7,719,327	-60	140	5
YUA0019	AC	60	602,484	7,719,368	-60	140	11
YUA0020	AC	40	602,484	7,719,407	-60	140	5
YUA0020 YUA0021	AC	23	602,432	7,719,446	-60	140	
YUA0021 YUA0022	AC	18	602,418	7,719,446	-60	140	2
YUA0022 YUA0023	AC	27	602,384	7,719,483	-60	140	14
YUA0023	AC	27		7,719,286	-60	140	14
			603,799				
YUA0025	AC	30	603,768	7,719,326	-60	140	17 5
YUA0026	AC	51	603,730	7,719,371	-60	140	
YUA0027	AC	30	603,700	7,719,408	-60	140	20
YUA0028	AC	30	603,669	7,719,447	-60	140	6
YUA0029	AC	33	603,635	7,719,484	-60	140	15
YUA0030	AC	24	603,603	7,719,521	-60	140	19
YUA0031	AC	21	603,576	7,719,558	-60	140	3
YUA0032	AC	20	603,536	7,719,598	-60	140	6
YUA0033	AC	22	603,505	7,719,635	-60	140	8
YUA0034	AC	24	603,478	7,719,672	-60	140	5
YUA0035	AC	22	603,446	7,719,713	-60	140	13
YUA0036	AC	23	603,412	7,719,751	-60	140	4
YUA0037	AC	27	603,381	7,719,793	-60	140	4
YUA0038	AC	30	603,347	7,719,832	-60	140	6
YUA0039	AC	39	603,316	7,719,869	-60	140	8
YUA0040	AC	27	603,246	7,719,944	-60	140	3
YUA0041	AC	39	603,218	7,719,980	-60	140	13
YUA0042	AC	54	603,184	7,720,019	-60	140	8
YUA0043	AC	27	603,156	7,720,065	-60	140	9
YUA0044	AC	25	603,125	7,720,099	-60	140	12
YUA0045	AC	20	603,091	7,720,134	-60	140	9
YUA0046	AC	33	603,056	7,720,176	-60	140	5
YUA0047	AC	42	603,025	7,720,212	-60	140	9
YUA0048	AC	54	602,989	7,720,246	-60	140	6
YUA0049	AC	27	602,958	7,720,281	-60	140	4
YUA0050	AC	24	602,926	7,720,329	-60	140	9
YUA0051	AC	34	602,896	7,720,369	-60	140	7
YUA0052	AC	24	602,863	7,720,401	-60	140	7
YUA0053	AC	26	605,416	7,719,348	-60	140	8
YUA0054	AC	45	605,387	7,719,386	-60	140	4
YUA0055	AC	45	605,353	7,719,429	-60	140	5
YUA0056	AC	49	605,327	7,719,465	-60	140	74
YUA0057	AC	30	605,291	7,719,505	-60	140	11
YUA0058	AC	38	605,258	7,719,535	-60	140	69
YUA0059	AC	30	605,223	7,719,581	-60	140	6
	AC	50	605,197	7,719,611	-60	140	7
	AC	50	000,197	1,719,011	-00	140	/
YUA0060 YUA0061	AC	15	605,159	7,719,657	-60	140	2

YUA0063	AC	13	605,100	7,719,736	-60	140	2
YUA0064	AC	25	605,065	7,719,773	-60	140	2
YUA0065	AC	25	605,031	7,719,810	-60	140	2
YUA0066	AC	20	605,001	7,719,848	-60	140	3
YUA0067	AC	23	605,423	7,721,826	-60	140	2
YUA0068	AC	21	605,391	7,721,860	-60	140	2
YUA0069	AC	21	605,361	7,721,901	-60	140	2
YUA0070	AC	39	605,330	7,721,940	-60	140	2
YUA0071	AC	31	605,298	7,721,986	-60	140	5
YUA0072	AC	24	605,264	7,722,027	-60	140	1
YUA0073	AC	19	605,235	7,722,061	-60	140	1
YUA0074	AC	26	605,201	7,722,098	-60	140	2
YUA0075	AC	20	605,163	7,722,136	-60	140	1
YUA0076	AC	20	605,138	7,722,168	-60	140	2
YUA0077	AC	20	605,101	7,722,213	-60	140	3
YUA0078	AC	19	605,074	7,722,244	-60	140	2
YUA0079	AC	24	605,981	7,722,165	-60	140	3
YUA0080	AC	23	605,948	7,722,209	-60	140	2
YUA0081	AC	24	605,916	7,722,247	-60	140	4
YUA0082	AC	24	605,885	7,722,288	-60	140	5
YUA0083	AC	25	605,851	7,722,329	-60	140	3
YUA0084	AC	26	605,818	7,722,366	-60	140	3
YUA0085	AC	28	605,784	7,722,401	-60	140	3
YUA0086	AC	25	605,750	7,722,438	-60	140	4
YUA0087	AC	28	605,718	7,722,478	-60	140	4
YUA0088	AC	25	605,686	7,722,513	-60	140	4
YUA0089	AC	26	605,654	7,722,560	-60	140	3
YUA0090	AC	28	605,621	7,722,589	-60	140	4
YUA0091	AC	25	605,595	7,722,632	-60	140	10
YUA0092	AC	27	605,564	7,722,673	-60	140	14
YUA0093	AC	26	605,530	7,722,711	-60	140	6
YUA0094	AC	25	605,496	7,722,747	-60	140	4
YUA0095	AC	26	605,463	7,722,783	-60	140	3
YUA0096	AC	23	605,432	7,722,827	-60	140	3
YUA0097	AC	23	605,403	7,722,864	-60	140	4
YUA0098	AC	30	605,366	7,722,900	-60	140	2
YUA0099	AC	25	605,332	7,722,938	-60	140	5
YUA0100	AC	24	605,301	7,722,973	-60	140	2
YUA0101	AC	25	605,267	7,723,012	-60	140	6
YUA0102	AC	26	605,236	7,723,051	-60	140	3
YUA0103	AC	26	607,502	7,723,836	-60	140	1
YUA0104	AC	28	607,471	7,723,879	-60	140	3
YUA0105	AC	29	607,435	7,723,917	-60	140	20
YUA0106	AC	31	607,406	7,723,954	-60	140	9
YUA0107	AC	30	607,374	7,723,986	-60	140	5
YUA0108	AC	29	607,339	7,724,028	-60	140	6
YUA0109	AC	33	607,305	7,724,067	-60	140	4
YUA0110	AC	33	607,273	7,724,106	-60	140	7
YUA0111	AC	32	607,241	7,724,144	-60	140	3
YUA0112	AC	32	607,209	7,724,182	-60	140	2
YUA0113	AC	29	607,177	7,724,221	-60	140	2
YUA0114	AC	33	607,147	7,724,255	-60	140	3
YUA0115	AC	29	607,116	7,724,292	-60	140	2
YUA0116	AC	27	607,082	7,724,333	-60	140	2
YUA0117	AC	25	607,051	7,724,374	-60	140	1
YUA0118	AC	24	607,018	7,724,408	-60	140	2
YUA0119	AC	22	606,987	7,724,438	-60	140	3
YUA0120	AC	29	606,952	7,724,485	-60	140	2
YUA0121	AC	25	606,922	7,724,518	-60	140	2
YUA0122	AC	20	606,890	7,724,562	-60	140	1
YUA0123	AC	20	606,857	7,724,602	-60	140	2
10/10120	10	13	606,822	7,724,638	-60	140	2
YUA0124	AC	10					
	AC	13	606,794	7,724,679	-60	140	1
YUA0124				7,724,679 7,724,713	-60 -60	140 140	1 3

VUA013 AC 52 607,897 7724,840 -60 140 3 VUA013 AC 27 607,892 77,24,332 -60 140 4 VUA013 AC 27 607,893 7,724,430 -60 140 4 VUA013 AC 24 607,801 7724,493 -60 140 2 VUA013 AC 23 607,761 77,24,475 -60 140 3 VUA013 AC 23 607,761 7,724,475 60 140 3 VUA013 AC 26 607,695 7,724,675 60 140 3 VUA013 AC 27 607,605 7,724,675 60 140 3 VUA014 AC 24 610,707 7,720,463 60 140 5 VUA014 AC 35 610,710 7,720,443 60 140 7 VUA0143 AC 36 610,7	YUA0128	AC	51	606,702	7,724,799	-60	140	2
VUA033 AC 27 607 861 7724.361 60 140 4 VUA033 AC 26 607 861 7724.438 -60 140 3 VUA0134 AC 23 607 861 7724.438 -60 140 2 VUA0135 AC 22 607 871 7724.533 -60 140 3 VUA0136 AC 22 607 899 7724.553 -60 140 3 VUA0138 AC 26 607 893 7724.654 -60 140 3 VUA014 AC 23 610,801 7724.674 -60 140 3 VUA014 AC 24 610,801 7724.671 -60 140 3 VUA014 AC 23 610,801 7720.440 -60 140 5 VUA014 AC 51 60,755 7720.460 -60 140 7 VUA014 AC 45 610,668								
VUADI3 AC 27 607/801 7/724,600 600 140 4 VUADI32 AC 26 607/801 7/724,438 -600 140 3 VUADI34 AC 30 607/801 7/724,438 -60 140 2 VUADI35 AC 22 607/801 7/724,453 -60 140 3 VUADI36 AC 22 607/801 7/724,553 -60 140 3 VUADI35 AC 27 607/851 7/724,674 -60 140 3 VUADI30 AC 19 607/855 7/724,674 -60 140 3 VUADI42 AC 24 610/704 7/70,407 -60 140 3 VUADI44 AC 31 610/754 7/70,407 -60 140 6 VUADI44 AC 35 610/754 7/720,407 -60 140 7 VUADI44 AC 51	YUA0130	AC	52	607,926	7,724,322	-60	140	8
VUA0132 AC 26 607/801 7/724/400 -60 140 4 VUA0135 AC 24 607/801 7/724/475 -60 140 2 VUA0135 AC 22 607/871 7/724/475 -60 140 2 VUA0135 AC 22 607/871 7/724/575 -60 140 2 VUA0135 AC 226 607/875 7/724/875 -60 140 2 VUA0139 AC 20 607/855 7/724/874 -60 140 3 VUA014 AC 19 607/855 7/724/874 -60 140 3 VUA0142 AC 23 610/755 7/724/874 -60 140 3 VUA0142 AC 39 610/754 7/724/87 -60 140 3 VUA0144 AC 15 610/640 7/720/87 -60 140 3 VUA0144 AC 36	YUA0131	AC	27			-60	140	4
VUA013: AC 30 607/801 7/224/475 -60 140 2 VUA013: AC 22 607/871 7/24/555 -60 140 3 VUA0137 AC 23 607/891 7/24/555 -60 140 3 VUA0138 AC 20 607/891 7/24/635 -60 140 3 VUA0139 AC 20 607/855 7/724/674 -60 140 3 VUA0140 AC 18 607/05 7/724/674 -60 140 3 VUA0141 AC 23 610,800 7/720/443 -60 140 5 VUA0143 AC 39 610/704 7/720/443 -60 140 6 VUA0143 AC 72 610,668 7/720,640 -60 140 7 VUA0144 AC 35 610,610 7/720,634 -60 140 3 VUA0144 AC 610,650		AC	26	607,861	7,724,400	-60	140	4
VUA0134 AC 30 607787 7724,475 -60 140 2 VUA0135 AC 22 607787 7724,535 -60 140 3 VUA0137 AC 26 607,699 7724,593 -60 140 3 VUA0138 AC 27 607,697 7724,593 -60 140 3 VUA0139 AC 20 607,655 7724,474 -60 140 3 VUA0142 AC 23 610,601 7,720,443 -60 140 3 VUA0141 AC 23 610,704 7,720,443 -60 140 6 VUA0144 AC 39 610,705 7,720,443 -60 140 6 7 VUA0145 AC 72 610,640 7,720,556 -60 140 7 VUA0144 AC 36 610,674 7,720,577 -60 140 21 VUA0144 AC	YUA0133	AC	24		7,724,438	-60	140	3
VUADI35 AC 22 607731 7724,553 -60 140 4 VUADI36 AC 23 607731 7724,553 -60 140 3 VUADI38 AC 27 607,671 7724,653 -60 140 3 VUADI39 AC 20 607,635 7.724,674 -60 140 3 VUADI4 AC 19 607,655 7.724,674 -60 140 3 VUADI4 AC 19 607,605 7.724,674 -60 140 3 VUADI42 AC 24 610,707 7.720,443 -60 140 5 VUADI42 AC 16 610,754 7.720,543 -60 140 14 VUADI44 AC 16 610,610 7.720,531 -60 140 9 VUADI44 AC 60 610,611 7.720,677 -60 140 9 VUADI45 AC 610,610	YUA0134	AC	30			-60	140	2
VUA013 AC 23 607.591 7.724.555 -60 140 3 VUA013 AC 26 607.691 7.724.635 60 140 2 VUA0138 AC 20 607.655 7.724.645 60 140 3 VUA0140 AC 19 607.655 7.724.647 -60 140 3 VUA0140 AC 23 610.601 7.720.443 -60 140 3 VUA0141 AC 23 610.704 7.720.460 -60 140 6 VUA0143 AC 39 610.735 7.720.480 -60 140 6 VUA0144 AC 72 610.640 7.720.556 -60 140 7 VUA0145 AC 72 610.640 7.720.573 -60 140 23 VUA0145 AC 79 610.510 7.720.713 -60 140 23 VUA0150 AC 62								
VUAD138 AC 27 607,671 7724,635 -60 140 2 VUAD139 AC 20 607,635 7724,710 -60 140 3 VUAD141 AC 23 610,801 7,724,470 -60 140 3 VUAD142 AC 24 610,770 7,720,443 -60 140 6 VUAD144 AC 39 610,775 7,720,443 -60 140 14 VUAD144 AC 72 610,668 7,720,518 -60 140 8 VUAD145 AC 72 610,668 7,720,518 -60 140 8 VUAD148 AC 33 610,514 7,720,773 -60 140 9 VUAD150 AC 62 610,414 7,720,713 -60 140 34 VUAD151 AC 62 610,478 7,720,797 -60 140 34 VUAD152 AC 65	YUA0136			607,731		-60	140	3
VUAD138 AC 27 607,671 7724,635 -60 140 2 VUAD139 AC 20 607,635 7724,710 -60 140 3 VUAD141 AC 23 610,801 7,724,470 -60 140 3 VUAD142 AC 24 610,770 7,720,443 -60 140 6 VUAD144 AC 39 610,775 7,720,443 -60 140 14 VUAD144 AC 72 610,668 7,720,518 -60 140 8 VUAD145 AC 72 610,668 7,720,518 -60 140 8 VUAD148 AC 33 610,514 7,720,773 -60 140 9 VUAD150 AC 62 610,414 7,720,713 -60 140 34 VUAD151 AC 62 610,478 7,720,797 -60 140 34 VUAD152 AC 65	YUA0137	AC	26	607,699	7,724,594	-60	140	3
VUAD139 AC 20 607,655 7,724,674 -60 140 3 VUAD104 AC 23 60,601 7,720,407 -60 140 3 VUAD14 AC 23 610,601 7,720,443 -60 140 5 VUAD143 AC 39 610,735 7,720,448 -60 140 6 VUAD144 AC 51 610,704 7,720,581 -60 140 14 VUAD145 AC 45 610,640 7,720,581 -60 140 8 VUAD148 AC 33 610,574 7,720,581 -60 140 9 VUAD149 AC 60 610,611 7,720,783 -60 140 23 VUAD150 AC 79 610,510 7,720,783 -60 140 30 VUAD151 AC 62 610,478 7,720,787 -60 140 30 VUAD153 AC 72 <td>YUA0138</td> <td>AC</td> <td>27</td> <td></td> <td></td> <td>-60</td> <td>140</td> <td></td>	YUA0138	AC	27			-60	140	
VILAD141 AC 23 610.801 7.720.407 60 140 3 VUAD142 AC 24 610.705 7.720.480 460 140 6 VUAD143 AC 39 610.735 7.720.480 460 140 14 VUAD145 AC 72 610.704 7.720.581 460 140 14 VUAD145 AC 45 610.640 7.720.581 460 140 8 VUAD144 AC 35 610.574 7.720.873 460 140 9 VUAD190 AC 62 610.478 7.720.783 460 140 23 VUAD191 AC 65 610.478 7.720.787 460 140 10 VUAD153 AC 72 610.378 7.720.787 460 140 10 VUAD154 AC 72 610.378 7.720.787 460 140 10 VUAD155 AC 72	YUA0139	AC	20	607,635	7,724,674	-60	140	
YUA0142 AC 24 6i0,770 77,720,443 -60 140 5 YUA0144 AC 39 610,735 7,720,4480 -60 140 14 YUA0144 AC 72 610,668 7,720,556 -60 140 7 YUA0145 AC 72 610,668 7,720,654 -60 140 3 YUA0148 AC 33 610,514 7,720,654 -60 140 3 YUA0148 AC 60 610,510 7,720,753 -60 140 23 YUA0150 AC 62 610,478 7,720,753 -60 140 23 YUA0151 AC 62 610,478 7,720,787 -60 140 34 YUA0152 AC 65 610,444 7,720,783 -60 140 9 YUA0153 AC 72 610,379 7,720,976 -60 140 31 YUA0155 AC 7	YUA0140	AC	19	607,605	7,724,710	-60	140	3
VUADI43 AC 39 610,735 7,720,480 -60 140 6 VUADI44 AC 51 610,704 7,720,556 -60 140 7 VUADI45 AC 45 610,660 7,720,556 -60 140 7 VUADI47 AC 36 610,671 7,720,573 -60 140 3 VUADI48 AC 33 610,574 7,720,677 -60 140 23 VUADI50 AC 79 610,510 7,720,773 -60 140 23 VUADI51 AC 62 610,478 7,720,787 -60 140 10 VUADI54 AC 72 610,318 7,720,970 -60 140 10 VUADI55 AC 72 610,318 7,720,970 -60 140 18 VUADI55 AC 72 610,315 7,720,970 -60 140 9 VUADI55 AC 75<	YUA0141	AC	23	610,801	7,720,407	-60	140	3
VUA0144 AC S1 610,704 7720,518 -60 140 14 VUA0145 AC 72 610,668 7720,556 -60 140 7 VUA0146 AC 45 610,640 7,720,551 -60 140 3 VUA0148 AC 33 610,574 7,720,677 -60 140 9 VUA0148 AC 60 610,541 7,720,773 -60 140 21 VUA0151 AC 62 610,478 7,720,787 -60 140 23 VUA0152 AC 65 610,444 7,720,866 -60 140 9 VUA0153 AC 72 610,379 7,720,901 -60 140 31 VUA0155 AC 75 610,315 7,720,938 -60 140 31 VUA0158 AC 54 610,252 7,721,03 -60 140 9 VUA0165 AC 56 <td>YUA0142</td> <td>AC</td> <td>24</td> <td>610,770</td> <td>7,720,443</td> <td>-60</td> <td>140</td> <td>5</td>	YUA0142	AC	24	610,770	7,720,443	-60	140	5
VUA0144 AC 51 610,704 7,720,518 -60 140 14 VUA0145 AC 72 610,668 7,720,551 -60 140 8 VUA0146 AC 45 610,640 7,720,551 -60 140 3 VUA0148 AC 33 610,574 7,720,677 -60 140 9 VUA0148 AC 60 610,541 7,720,773 -60 140 21 VUA0150 AC 62 610,478 7,720,787 -60 140 21 VUA0151 AC 62 610,478 7,720,873 -60 140 10 VUA0152 AC 65 610,411 7,720,866 -60 140 18 VUA0153 AC 72 610,379 7,720,938 -60 140 31 VUA0155 AC 75 610,315 7,720,976 -60 140 9 VUA0156 AC 75	YUA0143	AC	39	610,735	7,720,480	-60	140	6
YUA0146 AC 45 610.640 7,720.591 -60 140 8 YUA0147 AC 36 610.611 7,720.634 -60 140 3 YUA0148 AC 60 610.541 7,720.677 -60 140 21 YUA0150 AC 62 610.541 7,720.733 -60 140 23 YUA0151 AC 62 610.478 7,720.787 -60 140 34 YUA0152 AC 65 610.441 7,720.822 -60 140 9 YUA0153 AC 72 610.348 7,720.938 -60 140 9 YUA0155 AC 72 610.218 7,720.938 -60 140 9 YUA0158 AC 75 610.315 7,720.976 -60 140 7 YUA0159 AC 60 610.219 7,721.014 -60 140 70 YUA0161 AC 75 </td <td>YUA0144</td> <td>AC</td> <td>51</td> <td>610,704</td> <td></td> <td>-60</td> <td>140</td> <td>14</td>	YUA0144	AC	51	610,704		-60	140	14
YUA0147 AC 36 610.611 7/720.634 -60 140 3 YUA0148 AC 33 610.574 7/720.0713 -60 140 9 YUA0149 AC 60 610.514 7/720.713 -60 140 21 YUA0150 AC 79 610.510 7/720.787 -60 140 34 YUA0151 AC 655 610.414 7.720.901 -60 140 30 YUA0154 AC 72 610.379 7.720.901 -60 140 31 YUA0154 AC 72 610.315 7.720.976 -60 140 33 YUA0155 AC 75 610.252 7.721.0767 -60 140 9 YUA0155 AC 75 610.252 7.721.076 -60 140 9 YUA0158 AC 54 610.252 7.721.133 -60 140 25 YUA0160 AC <td< td=""><td>YUA0145</td><td>AC</td><td>72</td><td>610,668</td><td>7,720,556</td><td>-60</td><td>140</td><td>7</td></td<>	YUA0145	AC	72	610,668	7,720,556	-60	140	7
YUA0147 AC 36 610.611 7/720.634 -60 140 3 YUA0148 AC 33 610.574 7/720.0713 -60 140 9 YUA0149 AC 60 610.514 7/720.713 -60 140 21 YUA0150 AC 79 610.510 7/720.787 -60 140 34 YUA0151 AC 655 610.414 7.720.901 -60 140 30 YUA0154 AC 72 610.379 7.720.901 -60 140 31 YUA0154 AC 72 610.315 7.720.976 -60 140 33 YUA0155 AC 75 610.252 7.721.0767 -60 140 9 YUA0155 AC 75 610.252 7.721.076 -60 140 9 YUA0158 AC 54 610.252 7.721.133 -60 140 25 YUA0160 AC <td< td=""><td>YUA0146</td><td>AC</td><td>45</td><td>610,640</td><td></td><td>-60</td><td>140</td><td>8</td></td<>	YUA0146	AC	45	610,640		-60	140	8
YUA0149 AC 60 610,541 7,720,733 -60 140 21 YUA0150 AC 79 610,510 7,720,753 -60 140 23 YUA0151 AC 62 610,478 7,720,783 -60 140 34 YUA0152 AC 65 610,444 7,720,886 -60 140 19 YUA0153 AC 75 610,379 7,720,930 -60 140 18 YUA0155 AC 72 610,379 7,720,938 -60 140 31 YUA0156 AC 75 610,315 7,721,0936 -60 140 9 YUA0159 AC 60 610,223 7,721,014 -60 140 70 YUA0159 AC 60 610,252 7,721,73 -60 140 29 YUA0160 AC 75 610,125 7,721,71 -60 140 16 YUA0164 AC	YUA0147	AC	36			-60	140	3
YUA0150 AC 79 610,510 7,720,753 -60 140 23 YUA0151 AC 62 610,478 7,720,787 -60 140 34 YUA0152 AC 65 610,444 7,720,822 -60 140 9 YUA0153 AC 72 610,378 7,720,938 -60 140 18 YUA0155 AC 72 610,348 7,720,938 -60 140 31 YUA0155 AC 75 610,315 7,720,976 -60 140 83 YUA0158 AC 69 610,282 7,721,04 -60 140 9 YUA0159 AC 60 610,219 7,721,053 -60 140 25 YUA0160 AC 75 610,125 7,721,133 -60 140 16 YUA0161 AC 75 610,125 7,721,287 -60 140 32 YUA0164 AC 6	YUA0148	AC	33	610,574	7,720,677	-60	140	9
YUA0150 AC 79 610,510 7,720,753 -60 140 23 YUA0151 AC 62 610,478 7,720,787 -60 140 34 YUA0152 AC 65 610,444 7,720,822 -60 140 90 YUA0155 AC 72 610,379 7,720,938 -60 140 31 YUA0155 AC 72 610,348 7,720,938 -60 140 31 YUA0155 AC 75 610,315 7,720,976 -60 140 31 YUA0158 AC 63 610,252 7,721,014 -60 140 7 YUA0159 AC 60 610,252 7,721,053 -60 140 25 YUA0161 AC 78 610,157 7,721,133 -60 140 16 YUA0162 AC 75 610,125 7,721,257 -60 140 34 YUA0164 AC <td< td=""><td>YUA0149</td><td>AC</td><td>60</td><td>610,541</td><td>7,720,713</td><td>-60</td><td>140</td><td>21</td></td<>	YUA0149	AC	60	610,541	7,720,713	-60	140	21
YUA0IS1 AC 62 610,478 7,720,787 -60 140 34 YUA0IS2 AC 65 610,444 7,720,882 -60 140 10 YUA0IS3 AC 55 610,411 7,720,866 -60 140 18 YUA0IS5 AC 72 610,379 7,720,938 -60 140 31 YUA0IS5 AC 72 610,315 7,720,938 -60 140 83 YUA0IS6 AC 75 610,315 7,721,033 -60 140 9 YUA0IS8 AC 60 610,219 7,721,031 -60 140 29 YUA0I60 AC 75 610,157 7,721,173 -60 140 16 YUA0I61 AC 78 610,157 7,721,173 -60 140 16 YUA0I63 AC 60 610,058 7,721,237 -60 140 30 YUA0I64 AC <td< td=""><td>YUA0150</td><td>AC</td><td>79</td><td>610,510</td><td></td><td>-60</td><td>140</td><td>23</td></td<>	YUA0150	AC	79	610,510		-60	140	23
YUA0IS3 AC 55 610,411 7,720,866 -60 140 9 YUA0IS4 AC 72 610,379 7,720,901 -60 140 18 YUA0IS5 AC 72 610,315 7,720,976 -60 140 83 YUA0IS6 AC 75 610,315 7,720,976 -60 140 9 YUA0IS8 AC 69 610,283 7,721,014 -60 140 9 YUA0IS9 AC 60 610,219 7,721,014 -60 140 29 YUA0I60 AC 75 610,190 7,721,133 -60 140 25 YUA0I61 AC 78 610,157 7,721,213 -60 140 16 YUA0I64 AC 60 610,058 7,721,237 -60 140 16 YUA0I65 AC 57 610,024 7,721,327 -60 140 31 YUA0I65 AC 5	YUA0151	AC	62	610,478	7,720,787	-60	140	34
YUA0154 AC 72 610,379 7,720,901 -60 140 18 YUA0155 AC 72 610,348 7,720,938 -60 140 31 YUA0156 AC 75 610,315 7,720,976 -60 140 9 YUA0157 AC 69 610,283 7,721,014 -60 140 9 YUA0158 AC 54 610,229 7,721,014 -60 140 7 YUA0159 AC 60 610,219 7,721,014 -60 140 29 YUA0160 AC 75 610,127 7,721,133 -60 140 16 YUA0162 AC 75 610,125 7,721,237 -60 140 16 YUA0163 AC 60 610,088 7,721,237 -60 140 6 YUA0164 AC 63 609,933 7,721,427 -60 140 3 YUA0166 AC 48<	YUA0152	AC	65	610,444	7,720,822	-60	140	10
YUA0IS5 AC 72 610,348 7,720,938 -60 140 31 YUA0IS6 AC 75 610,315 7,720,976 -60 140 83 YUA0IS7 AC 69 610,283 7,721,014 -60 140 9 YUA0IS8 AC 54 610,252 7,721,033 -60 140 29 YUA0IS9 AC 60 610,219 7,721,174 -60 140 25 YUA0I61 AC 778 610,157 7,721,174 -60 140 16 YUA0I62 AC 75 610,125 7,721,213 -60 140 16 YUA0I63 AC 60 610,028 7,721,237 -60 140 16 YUA0I64 AC 60 610,028 7,721,327 -60 140 3 YUA0I66 AC 57 610,024 7,721,327 -60 140 3 YUA0I66 AC	YUA0153	AC	55	610,411	7,720,866	-60	140	9
YUA0156 AC 75 610,315 7,720,976 -60 140 83 YUA0157 AC 69 610,283 7,721,014 -60 140 9 YUA0158 AC 54 610,283 7,721,053 -60 140 7 YUA0159 AC 60 610,219 7,721,051 -60 140 29 YUA0160 AC 75 610,157 7,721,133 -60 140 25 YUA0161 AC 75 610,157 7,721,213 -60 140 16 YUA0162 AC 75 610,028 7,721,213 -60 140 16 YUA0163 AC 60 610,028 7,721,227 -60 140 3 YUA0164 AC 48 609,933 7,721,364 -60 140 32 YUA0167 AC 63 609,934 7,721,422 -60 140 32 YUA0167 AC 1	YUA0154	AC	72	610,379	7,720,901	-60	140	18
YUA0157 AC 69 610,283 7,721,014 -60 140 9 YUA0158 AC 54 610,252 7,721,053 -60 140 7 YUA0159 AC 60 610,219 7,721,091 -60 140 29 YUA0160 AC 75 610,190 7,721,174 -60 140 25 YUA0161 AC 78 610,157 7,721,174 -60 140 16 YUA0162 AC 75 610,125 7,721,250 -60 140 16 YUA0163 AC 60 610,028 7,721,257 -60 140 16 YUA0165 AC 57 610,024 7,721,327 -60 140 4 YUA0166 AC 48 609,993 7,721,364 -60 140 3 YUA0166 AC 63 609,934 7,721,402 -60 140 3 YUA0170 AC 18<	YUA0155	AC	72	610,348	7,720,938	-60	140	31
YUA0158 AC 54 610,252 7,721,053 -60 140 7 YUA0159 AC 60 610,219 7,721,031 -60 140 29 YUA0160 AC 75 610,197 7,721,173 -60 140 16 YUA0161 AC 78 610,125 7,721,213 -60 140 16 YUA0162 AC 75 610,125 7,721,287 -60 140 16 YUA0164 AC 60 610,058 7,721,287 -60 140 6 YUA0165 AC 57 610,024 7,721,287 -60 140 4 YUA0166 AC 48 609,993 7,721,287 -60 140 4 YUA0168 AC 63 609,934 7,721,287 -60 140 32 YUA0169 AC 18 611,128 7,721,422 -60 140 2 YUA0170 AC 18<	YUA0156	AC	75	610,315	7,720,976	-60	140	83
YUA0159 AC 60 610,219 7,721,091 -60 140 29 YUA0160 AC 75 610,190 7,721,133 -60 140 25 YUA0161 AC 78 610,157 7,721,174 -60 140 16 YUA0162 AC 75 610,125 7,721,213 -60 140 70 YUA0163 AC 60 610,088 7,721,250 -60 140 16 YUA0164 AC 60 610,058 7,721,287 -60 140 6 YUA0166 AC 57 610,024 7,721,327 -60 140 4 YUA0166 AC 48 609,937 7,721,364 -60 140 32 YUA0169 AC 18 611,128 7,721,042 -60 140 2 YUA0170 AC 18 611,021 7,721,024 -60 140 2 YUA0171 AC 21	YUA0157	AC	69	610,283	7,721,014	-60	140	9
YUA0160 AC 75 610,190 7,721,133 -60 140 25 YUA0161 AC 78 610,157 7,721,174 -60 140 16 YUA0162 AC 75 610,125 7,721,213 -60 140 70 YUA0163 AC 60 610,088 7,721,250 -60 140 6 YUA0164 AC 60 610,058 7,721,287 -60 140 6 YUA0165 AC 57 610,024 7,721,327 -60 140 4 YUA0166 AC 48 609,935 7,721,402 -60 140 4 YUA0167 AC 63 609,934 7,721,422 -60 140 32 YUA0169 AC 18 611,28 7,721,015 -60 140 2 YUA0170 AC 18 611,021 7,721,024 -60 140 2 YUA0171 AC 21 <td></td> <td>AC</td> <td>54</td> <td>610,252</td> <td>7,721,053</td> <td>-60</td> <td>140</td> <td>7</td>		AC	54	610,252	7,721,053	-60	140	7
YUA0161 AC 78 610,157 7,721,174 -60 140 16 YUA0162 AC 75 610,125 7,721,213 -60 140 70 YUA0163 AC 60 610,088 7,721,287 -60 140 16 YUA0164 AC 60 610,024 7,721,287 -60 140 3 YUA0165 AC 57 610,024 7,721,327 -60 140 4 YUA0166 AC 48 609,993 7,721,402 -60 140 4 YUA0167 AC 63 609,934 7,721,422 -60 140 32 YUA0169 AC 18 611,128 7,721,046 -60 140 32 YUA0170 AC 18 611,094 7,721,128 -60 140 5 YUA0171 AC 21 610,066 7,721,128 -60 140 2 YUA0173 AC 22<	YUA0159	AC	60	610,219	7,721,091	-60	140	29
YUA0162 AC 75 610,125 7,721,213 -60 140 70 YUA0163 AC 60 610,088 7,721,250 -60 140 16 YUA0164 AC 60 610,058 7,721,250 -60 140 6 YUA0165 AC 57 610,024 7,721,327 -60 140 3 YUA0166 AC 48 609,993 7,721,354 -60 140 4 YUA0167 AC 63 609,934 7,721,402 -60 140 32 YUA0168 AC 63 609,934 7,721,042 -60 140 32 YUA0169 AC 18 611,094 7,721,046 -60 140 5 YUA0170 AC 21 611,066 7,721,092 -60 140 5 YUA0172 AC 22 611,001 7,721,138 -60 140 2 YUA0173 AC 20 </td <td>YUA0160</td> <td>AC</td> <td>75</td> <td>610,190</td> <td>7,721,133</td> <td>-60</td> <td>140</td> <td>25</td>	YUA0160	AC	75	610,190	7,721,133	-60	140	25
YUA0163 AC 60 610,088 7,721,250 -60 140 16 YUA0164 AC 60 610,058 7,721,287 -60 140 6 YUA0165 AC 57 610,024 7,721,287 -60 140 3 YUA0166 AC 48 609,993 7,721,364 -60 140 4 YUA0167 AC 69 609,965 7,721,402 -60 140 32 YUA0168 AC 63 609,934 7,721,402 -60 140 32 YUA0169 AC 18 611,28 7,721,015 -60 140 2 YUA0170 AC 18 611,024 7,721,092 -60 140 5 YUA0172 AC 21 611,066 7,721,092 -60 140 2 YUA0173 AC 20 611,001 7,721,128 -60 140 2 YUA0174 AC 42 <td>YUA0161</td> <td>AC</td> <td>78</td> <td>610,157</td> <td>7,721,174</td> <td>-60</td> <td>140</td> <td>16</td>	YUA0161	AC	78	610,157	7,721,174	-60	140	16
YUA0164 AC 60 610,058 7,721,287 -60 140 6 YUA0165 AC 57 610,024 7,721,327 -60 140 3 YUA0166 AC 48 609,993 7,721,364 -60 140 4 YUA0167 AC 69 609,965 7,721,402 -60 140 32 YUA0168 AC 63 609,934 7,721,402 -60 140 32 YUA0169 AC 18 611,128 7,721,015 -60 140 2 YUA0170 AC 18 611,094 7,721,015 -60 140 5 YUA0171 AC 21 611,066 7,721,092 -60 140 9 YUA0172 AC 22 611,032 7,721,128 -60 140 2 YUA0174 AC 42 610,969 7,721,39 -60 140 6 YUA0175 AC 28	YUA0162	AC	75	610,125	7,721,213	-60	140	70
YUA0165 AC 57 610,024 7,721,327 -60 140 3 YUA0166 AC 48 609,993 7,721,364 -60 140 4 YUA0167 AC 69 609,965 7,721,402 -60 140 15 YUA0168 AC 63 609,934 7,721,422 -60 140 32 YUA0169 AC 18 611,094 7,721,046 -60 140 2 YUA0170 AC 18 611,094 7,721,092 -60 140 5 YUA0171 AC 21 611,066 7,721,092 -60 140 9 YUA0172 AC 22 611,032 7,721,128 -60 140 9 YUA0173 AC 20 611,001 7,721,239 -60 140 2 YUA0174 AC 42 610,969 7,721,33 -60 140 47 YUA0175 AC 28 <td>YUA0163</td> <td></td> <td>60</td> <td>610,088</td> <td>7,721,250</td> <td>-60</td> <td></td> <td></td>	YUA0163		60	610,088	7,721,250	-60		
YUA0166AC48609,9937,721,364-601404YUA0167AC69609,9657,721,402-6014015YUA0168AC63609,9347,721,442-6014032YUA0169AC18611,1287,721,015-601402YUA0170AC18611,0947,721,046-601405YUA0171AC21611,0667,721,092-601405YUA0172AC22611,0327,721,128-601409YUA0173AC20611,0017,721,163-601402YUA0174AC42610,9697,721,239-6014047YUA0175AC28610,9387,721,279-6014047YUA0176AC24610,9077,721,317-6014047YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,354-6014041YUA0180AC36610,7487,721,459-6014041YUA0181AC48610,7167,721,503-6014041YUA0182AC44610,7167,721,539-6014041YUA0183AC50610,6807,721,539 </td <td>YUA0164</td> <td></td> <td>60</td> <td>610,058</td> <td></td> <td>-60</td> <td>140</td> <td></td>	YUA0164		60	610,058		-60	140	
YUA0167AC69609,9657,721,402-6014015YUA0168AC63609,9347,721,442-6014032YUA0169AC18611,1287,721,015-601402YUA0170AC18611,0947,721,046-601405YUA0171AC21611,0667,721,092-601405YUA0172AC22611,0327,721,128-601409YUA0173AC20610,0697,721,03-601402YUA0174AC42610,9697,721,133-6014047YUA0175AC28610,9387,721,239-6014047YUA0176AC24610,9077,721,317-601405YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014041YUA0179AC35610,8087,721,354-6014041YUA0180AC36610,7757,721,431-6014041YUA0180AC48610,7167,721,503-6014041YUA0181AC44610,7167,721,539-6014041YUA0183AC50610,6807,721,539-6014045YUA0184AC26610,6527,721,539 <td>YUA0165</td> <td>AC</td> <td>57</td> <td>610,024</td> <td>7,721,327</td> <td>-60</td> <td>140</td> <td>3</td>	YUA0165	AC	57	610,024	7,721,327	-60	140	3
YUA0168AC63609,9347,721,442-6014032YUA0169AC18611,1287,721,015-601402YUA0170AC18611,0947,721,046-601405YUA0171AC21611,0667,721,092-601405YUA0172AC22611,0327,721,128-601409YUA0173AC20611,0017,721,163-601402YUA0174AC42610,9697,721,199-601406YUA0175AC28610,9387,721,239-6014047YUA0176AC24610,9077,721,317-6014047YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014041YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014041YUA0181AC48610,7167,721,503-6014041YUA0182AC44610,7167,721,539-60140114YUA0183AC26610,6527,721,539-60140114YUA0184AC26610,6527,721,539-60140114YUA0185AC45610,6177,721,63				609,993		-60		
YUA0169AC18611,1287,721,015-601402YUA0170AC18611,0947,721,046-601405YUA0171AC21611,0667,721,092-601405YUA0172AC22611,0327,721,128-601409YUA0173AC20611,0017,721,163-601402YUA0174AC42610,9697,721,199-601406YUA0175AC28610,9387,721,239-6014047YUA0176AC24610,9077,721,276-601407YUA0177AC29610,8767,721,354-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014041YUA0181AC48610,7487,721,593-6014044YUA0182AC44610,7167,721,539-6014025YUA0183AC26610,6527,721,539-6014025YUA0184AC26610,6527,721,631-6014025YUA0185AC45610,6177,721,631-601406YUA0186AC33610,5867,721,669 <td></td> <td></td> <td></td> <td>609,965</td> <td></td> <td></td> <td></td> <td></td>				609,965				
YUA0170AC18611,0947,721,046-601405YUA0171AC21611,0667,721,092-601405YUA0172AC22611,0327,721,128-601409YUA0173AC20611,0017,721,163-601402YUA0174AC42610,9697,721,199-601406YUA0175AC28610,9387,721,239-6014047YUA0176AC24610,9077,721,276-601407YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014041YUA0181AC44610,7167,721,539-6014044YUA0182AC44610,7167,721,539-6014045YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,539-60140144YUA0185AC45610,6177,721,631-6014025YUA0186AC33610,5867,721,669-601408		AC		,	1 1	-60		_
YUA0171AC21611,0667,721,092-601405YUA0172AC22611,0327,721,128-601409YUA0173AC20611,0017,721,163-601402YUA0174AC42610,9697,721,199-601406YUA0175AC28610,9387,721,239-6014047YUA0176AC24610,9077,721,276-601407YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014041YUA0181AC48610,7167,721,503-601404YUA0182AC44610,7167,721,539-601404YUA0183AC26610,6807,721,539-60140114YUA0184AC26610,6527,721,539-60140114YUA0185AC45610,6177,721,631-601406YUA0186AC33610,5867,721,669-601408								
YUA0172AC22611,0327,721,128-601409YUA0173AC20611,0017,721,163-601402YUA0174AC42610,9697,721,199-601406YUA0175AC28610,9387,721,239-6014047YUA0176AC24610,9077,721,276-601407YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014041YUA0181AC48610,7167,721,503-6014044YUA0182AC44610,7167,721,539-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,539-60140114YUA0185AC45610,6177,721,631-6014025YUA0186AC33610,5867,721,631-6014028				· · ·				
YUA0173AC20611,0017,721,163-601402YUA0174AC42610,9697,721,199-601406YUA0175AC28610,9387,721,239-6014047YUA0176AC24610,9077,721,276-601407YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014061YUA0181AC48610,7167,721,503-601404YUA0182AC44610,7167,721,539-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,539-60140144YUA0185AC45610,6177,721,631-6014025YUA0186AC33610,5867,721,669-6014028YUA0186AC33610,5867,721,669-601408								
YUA0174AC42610,9697,721,199-601406YUA0175AC28610,9387,721,239-6014047YUA0176AC24610,9077,721,276-601407YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014061YUA0181AC48610,7167,721,503-601404YUA0182AC44610,7167,721,503-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,539-6014025YUA0185AC45610,6177,721,631-601406YUA0186AC33610,5867,721,631-6014028								
YUA0175AC28610,9387,721,239-6014047YUA0176AC24610,9077,721,276-601407YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014061YUA0181AC48610,7167,721,459-601404YUA0182AC44610,7167,721,503-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,631-601406YUA0185AC45610,6177,721,631-601408								
YUA0176AC24610,9077,721,276-601407YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014061YUA0181AC48610,7167,721,503-601404YUA0182AC44610,7167,721,503-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,631-601406YUA0185AC45610,6177,721,631-601406YUA0186AC33610,5867,721,69-601408								
YUA0177AC29610,8767,721,317-601405YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014061YUA0181AC48610,7167,721,459-601404YUA0182AC44610,7167,721,503-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,539-601406YUA0185AC45610,6177,721,631-6014028YUA0186AC33610,5867,721,669-601408				·				
YUA0178AC26610,8467,721,354-6014065YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014061YUA0181AC48610,7487,721,459-601404YUA0182AC44610,7167,721,503-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,539-601406YUA0185AC45610,6177,721,631-6014028YUA0186AC33610,5867,721,669-601408								
YUA0179AC35610,8087,721,394-6014041YUA0180AC36610,7757,721,431-6014061YUA0181AC48610,7487,721,459-601404YUA0182AC44610,7167,721,503-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,589-601406YUA0185AC45610,6177,721,631-6014028YUA0186AC33610,5867,721,669-601408								
YUA0180AC36610,7757,721,431-6014061YUA0181AC48610,7487,721,459-601404YUA0182AC44610,7167,721,503-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,589-601406YUA0185AC45610,6177,721,631-6014028YUA0186AC33610,5867,721,669-601408								
YUA0181AC48610,7487,721,459-601404YUA0182AC44610,7167,721,503-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,589-601406YUA0185AC45610,6177,721,631-6014028YUA0186AC33610,5867,721,669-601408								
YUA0182AC44610,7167,721,503-6014025YUA0183AC50610,6807,721,539-60140114YUA0184AC26610,6527,721,589-601406YUA0185AC45610,6177,721,631-6014028YUA0186AC33610,5867,721,669-601408								
YUA0183 AC 50 610,680 7,721,539 -60 140 114 YUA0184 AC 26 610,652 7,721,589 -60 140 6 YUA0185 AC 45 610,617 7,721,631 -60 140 28 YUA0186 AC 33 610,586 7,721,669 -60 140 8								
YUA0184 AC 26 610,652 7,721,589 -60 140 6 YUA0185 AC 45 610,617 7,721,631 -60 140 28 YUA0186 AC 33 610,586 7,721,669 -60 140 8								
YUA0185 AC 45 610,617 7,721,631 -60 140 28 YUA0186 AC 33 610,586 7,721,669 -60 140 8								
YUA0186 AC 33 610,586 7,721,669 -60 140 8								
YUAUIO/ AC /8 610,555 /,/21,/04 -60 140 7					· · ·			
	YUAU187	AC	78	610,555	7,721,704	-60	140	1

Appendix 2: AC multi-element data for elements relevant to the mineralisation style and reported in this release. Bold values are considered anomalous for the district. Negative values are below detection.

Bold value	s are con	sidered a	nomalous								
Hole ID	From	То	Туре	Au (ppb)	Ag (nnm)	Bi (nnm)	Cu (nnm)	Mo (nnm)	Sb (nnm)	Zn (nnm)	Te (nnm)
VIIA0001	20	21	EOH	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
YUA0001 YUA0002	20 21	21 22	EOH	2	0.05 0.03	0.25 0.16	24 26	0.6	3.5 1.4	95 72	-0.05
			EOH					0.6			-0.05
YUA0003	20	21	EOH	2	0.07	0.04	55	3.1	0.7	134	-0.05
YUA0004	12	13	EOH	1	0.15	0.03	18	0.5	0.3	72	-0.05
YUA0005	13	14	EOH	1	0.25	0.03	21	0.7	0.2	113	-0.05
YUA0006	15	16	EOH	1	0.08	0.05	22	0.6	0.2	125	-0.05
YUA0007	12	13	EOH	1	0.05	0.05	10	0.5	2.2	85	0.05
YUA0008	13	14	EOH	1	0.05	0.04	6	0.3	1.1	124	-0.05
YUA0009	12	13	EOH	4	0.03	0.03	18	0.4	1.4	131	-0.05
YUA0010	6	7	EOH	-1	0.03	0.03	21	0.4	1.0	147	-0.05
YUA0011	4	5	EOH	1	0.15	0.04	19	0.6	1.1	111	-0.05
YUA0012	41	42	EOH	3	0.06	0.11	13	2.5	2.9	31	-0.05
YUA0013	35	36	EOH	-1	0.07	0.01	70	0.5	7.2	218	-0.05
YUA0014	16	17	EOH	3	4.74	0.04	13	1.6	0.8	30	-0.05
YUA0015	15	16	EOH	10	0.32	0.04	10	0.6	0.4	16	-0.05
YUA0016	15	16	EOH	3	0.17	0.06	11	0.4	0.6	22	-0.05
YUA0017	20	21	EOH	3	0.09	0.00	48	0.4	16.6	309	-0.05
YUA0018	20	21	EOH	3	0.09	0.01	107	0.3	5.0	409	0.05
YUA0018 YUA0019	59	60	EOH	4	0.16	0.04	65	0.3	3.3	109	-0.05
YUA0020	39	40	EOH	4	0.07	0.04	17	0.7	3.1	110	-0.05
YUA0021	22	23	EOH	2	0.10	0.06	32	6.5	2.2	89	-0.05
YUA0022	17	18	EOH	1	0.09	0.10	20	0.6	1.2	27	-0.05
YUA0023	26	27	EOH	6	0.74	0.14	23	0.8	2.2	54	-0.05
YUA0024	23	24	EOH	4	0.09	0.14	58	1.0	4.5	41	-0.05
YUA0025	29	30	EOH	1	0.04	0.17	21	0.6	8.4	10	-0.05
YUA0026	50	51	EOH	-1	0.09	-0.01	165	0.5	3.9	117	-0.05
YUA0027	29	30	EOH	1	0.04	0.01	50	0.2	11.9	124	-0.05
YUA0028	29	30	EOH	1	0.09	0.05	215	0.9	10.4	130	0.07
YUA0029	32	33	EOH	3	0.06	0.06	93	0.3	4.3	104	-0.05
YUA0030	23	24	EOH	19	0.04	0.03	82	0.2	3.6	72	-0.05
YUA0031	20	21	EOH	3	0.03	0.03	54	0.2	2.3	77	-0.05
YUA0032	19	20	EOH	1	0.04	0.07	21	0.3	1.3	42	-0.05
YUA0033	21	22	EOH	2	0.05	0.14	52	0.4	1.7	56	-0.05
YUA0034	23	24	EOH	-1	0.09	0.06	18	0.5	1.5	36	-0.05
YUA0035	21	22	EOH	-1	0.09	0.00	35	0.7	1.9	327	-0.05
YUA0036	22	23	EOH	-1	0.03	0.09	23	0.5	1.5	66	-0.05
YUA0030	26	23	EOH	-1	0.52	0.09	32	0.3	2.6	381	-0.05
								-			
YUA0038	29	30	EOH	2	0.47	0.03	83	0.4	4.0	85	-0.05
YUA0039	38	39	EOH	8	0.03	0.03	64	0.2	2.9	88	-0.05
YUA0040	26	27	EOH	1	0.08	0.01	74	0.5	2.3	16	-0.05
YUA0041	38	39	EOH	5	0.20	-0.01	98	0.7	6.7	169	-0.05
YUA0042	53	54	EOH	4	0.20	-0.01	120	0.6	5.3	96	-0.05
YUA0043	26	27	EOH	9	0.21	-0.01	75	7.4	5.2	219	-0.05
YUA0044	24	25	EOH	3	0.06	-0.01	77	1.0	1.5	228	-0.05
YUA0045	19	20	EOH	9	0.05	-0.01	61	0.4	1.8	54	-0.05
YUA0046	32	33	EOH	1	0.03	-0.01	103	0.4	2.4	115	-0.05
YUA0047	41	42	EOH	4	0.05	-0.01	40	0.2	1.8	90	-0.05
YUA0048	53	54	EOH	1	0.02	-0.01	64	0.2	2.2	58	-0.05
YUA0049	26	27	EOH	1	0.14	-0.01	114	0.3	1.4	108	-0.05
YUA0050	23	24	EOH	3	0.10	-0.01	52	1.4	2.7	183	-0.05
YUA0051	33	34	EOH	3	0.06	0.07	23	0.9	1.4	43	-0.05
YUA0052	23	24	EOH	4	0.00	0.07	18	0.4	1.3	45	-0.05
YUA0053	25	24	EOH	1	0.17	-0.01	178	1.0	13.4	73	-0.05
YUA0053	15	18	Comp	2	0.09	0.03	63	0.7	5.2	62	0.025
YUA0054	18	21	Comp	2	0.18	0.03	108	1.1	7.9	96	0.025
YUA0054	21	24	Comp	2	0.15	0.03	102	1.2	5.8	84	0.025
YUA0054	24	27	Comp	1	0.09	0.03	90	1.3	7.6	74	0.025
YUA0054	27	30	Comp	1	0.07	0.04	100	1.3	8.1	86	0.025
YUA0054	30	33	Comp	3	0.05	0.03	97	1.1	4.7	95	0.025
YUA0054	33	36	Comp	2	0.07	0.02	111	1.6	51.6	89	0.025
YUA0054	36	39			0.13	0.09	48	1.1	145.5	53	0.025

Hole ID	From	То	Туре	Au (ppb)	Ag (ppm)	Bi (ppm)	Cu (ppm)	Mo (nnm)	Sb (ppm)	Zn (ppm)	Te (ppm)
YUA0054	39	42	Comp	(ppb) 2	(ppm) 0.11	(ppm) 0.]5	(ppm) 39	(ppm) 0.8	(ppm) 19.3	(ppm) 40	(ppm) 0.025
YUA0054	42	44	Comp	4	0.05	0.04	92	1.5	82.3	40 56	0.025
YUA0054	44	45	EOH	3	6.72	-0.01	48	3.4	182.0	75	-0.05
YUA0055	0	3	Comp	2	0.02	0.09	15	0.4	0.5	12	0.025
YUA0055	44	45	EOH	3	0.11	0.19	72	1.2	8.2	123	-0.05
YUA0056	21	24	Comp	22	0.29	0.11	13	1.1	7.5	14	0.025
YUA0056	24	27	Comp	39	0.17	0.11	22	1.2	11.2	9	0.025
YUA0056	27	30	Comp	74	0.08	0.21	54	1.5	16.6	12	0.025
YUA0056	30	33	Comp	48	0.11	0.17	31	1.2	15.8	30	0.025
YUA0056	33	36	Comp	42	0.16	0.19	29	1.1	13.1	38	0.025
YUA0056	36	39	Comp	14	0.05	0.16	21	0.5	3.9	26	0.025
YUA0056	39	42	Comp	13	0.06	0.14	26	0.7	5.5	35	0.025
YUA0056	42	45	Comp	66	0.12	0.15	27	0.9	7.1	30	0.025
YUA0056	45	48	Comp	44	0.20	0.17	38	1.3	15.6	36	0.025
YUA0056	48	49	EOH	13	0.13	0.02	17	1.0	4.9	18	-0.05
YUA0057	29	30	EOH	2	0.37	0.04	24	1.5	1.9	13	-0.05
YUA0058	37	38	EOH	3	3.28	-0.01	13	5.6	1.4	5	-0.05
YUA0059	29	30	EOH	5	0.05	-0.01	186	1.2	2.9	126	-0.05
YUA0060	49	50	EOH	2	0.08	-0.01	148	0.8	1.3	107	-0.05
YUA0061	14	15	EOH	1	0.04	0.02	10	0.5	0.6	31	-0.05
YUA0062	21	22	EOH EOH	6	2.75	0.09	65 16	0.7	1.1	64	-0.05
YUA0063	12	13 25		1	0.11	-0.01 0.52	23	0.7 0.7	0.4	20 35	-0.05
YUA0064 YUA0065	24 24	25	EOH EOH	2	0.24 0.17	0.52	18	0.7	0.9	67	-0.05 -0.05
YUA0065	19	20	EOH	3	0.17	0.02	18	0.7	1.0	56	-0.05
YUA0067	22	23	EOH	1	0.13	0.21	7	0.0	5.2	62	-0.05
YUA0068	22	23	EOH	2	0.41	0.21	11	1.5	5.7	53	-0.05
YUA0069	20	21	EOH	1	0.25	0.00	7	1.0	4.6	61	-0.05
YUA0070	38	39	EOH	-]	0.08	0.01	7	0.7	6.2	81	-0.05
YUA0071	30	31	EOH	-]	0.06	0.11	4	0.7	5.7	75	-0.05
YUA0072	23	24	EOH	-1	0.08	0.11	10	0.9	3.1	50	-0.05
YUA0073	18	19	EOH	1	0.13	0.06	8	1.8	3.6	46	-0.05
YUA0074	25	26	EOH	1	0.06	0.11	4	1.3	6.9	79	-0.05
YUA0075	19	20	EOH	1	0.02	0.03	11	0.7	2.2	28	-0.05
YUA0076	19	20	EOH	1	0.27	0.07	8	1.8	2.6	39	-0.05
YUA0077	18	19	EOH	1	0.17	0.09	23	1.2	2.4	26	-0.05
YUA0078	18	19	EOH	1	0.11	0.17	5	1.9	3.8	89	-0.05
YUA0079	23	24	EOH	2	0.12	0.30	18	6.8	12.6	77	0.07
YUA0080	22	23	EOH	2	7.14	0.12	21	1.7	4.6	26	-0.05
YUA0081	23	24	EOH	2	0.32	0.10	12	1.1	9.6	20	-0.05
YUA0082	23	24	EOH	2	0.03	0.11	13	0.4	4.5	27	-0.05
YUA0083	24	25	EOH	3	0.04	0.09	8	0.5	2.5	23	-0.05
YUA0084	25	26	EOH	2	0.05	0.12	21	0.5	5.3	39	-0.05
YUA0085	27	28	EOH	2	0.08	0.13	16	0.7	6.8	41	-0.05
YUA0086	24	25	EOH	4	0.09	0.20	21	0.8	7.0	44	-0.05
YUA0087	27	28	EOH	3 4	0.47	0.41	22	1.1	5.8	100	-0.05
YUA0088 YUA0089	24 25	25 26	EOH EOH	2	0.13 0.24	0.06 0.43	10 18	0.3 0.9	2.2 7.5	18 79	-0.05 -0.05
YUA0089 YUA0090	23	28	EOH	2	0.24	0.43	20	0.9	7.5 3.3	52	-0.05
YUA0090	24	25	EOH	2	0.09	0.14	16	0.3	3.9	32	-0.05
YUA0091	24	23	EOH	3	0.09	0.12	24	0.5	2.7	35	-0.05
YUA0093	25	26	EOH	2	0.16	0.45	12	0.6	4.4	52	-0.05
YUA0094	24	25	EOH	2	0.10	0.18	12	1.1	5.3	80	-0.05
YUA0095	25	26	EOH	2	7.05	0.25	37	1.8	8.5	78	-0.05
YUA0096	22	23	EOH	2	0.42	0.13	13	1.6	4.6	43	-0.05
YUA0097	22	23	EOH	2	0.05	0.11	13	1.2	7.6	51	-0.05
YUA0098	29	30	EOH	2	0.04	0.07	14	0.5	1.9	26	-0.05
YUA0099	24	25	EOH	2	0.12	0.20	10	0.7	8.2	59	-0.05
YUA0100	23	24	EOH	2	0.05	0.08	6	0.7	6.3	77	-0.05
YUA0101	24	25	EOH	1	0.23	0.08	7	0.7	3.1	53	-0.05
YUA0102	25	26	EOH	1	0.14	0.17	8	1.3	7.1	76	-0.05
YUA0103	25	26	EOH	1	0.07	0.13	20	0.7	4.0	26	-0.05
YUA0104	27	28	EOH	2	0.08	0.09	10	0.5	2.8	28	-0.05

Hole ID	From	То	Туре	Au (nnh)	Ag (nnm)	Bi (nnm)	Cu	Mo (nnm)	Sb (nnm)	Zn (nnm)	Te (nnm)
YUA0105	28	29	EOH	(ppb) 4	(ppm) 0.18	(ppm) 0.09	(ppm) 18	(ppm) 1.0	(ppm) 6.9	(ppm) 3]	(ppm) -0.05
YUA0106	30	31	EOH	2	0.10	0.16	22	0.6	21.3	78	-0.05
YUA0107	29	30	EOH	2	0.12	0.09	11	0.5	17.1	60	-0.05
YUA0108	28	29	EOH	3	0.04	0.09	11	0.4	4.7	31	-0.05
YUA0109	32	33	EOH	3	0.03	0.06	16	0.6	3.7	56	-0.05
YUA0110	32	33	EOH	2	0.05	0.14	16	0.5	7.8	47	-0.05
YUA0111	31	32	EOH	2	0.07	0.16	14	0.5	5.9	32	-0.05
YUA0112	30	31	EOH	2	0.06	0.14	19	0.6	5.6	31	-0.05
YUA0113	28	29	EOH	2	96.80	0.83	78	2.1	8.1	112	-0.05
YUA0114	32	33	EOH	2	0.18	0.14	18	0.6	3.0	50	-0.05
YUA0115	28	29	EOH	2	0.62	12.50	9	0.9	5.6	51	0.15
YUA0116	26	27	EOH	2	0.74	0.32	18	1.3	4.6	47	-0.05
YUA0117	24	25	EOH	1	0.08	0.20	13	0.8	6.5	65	-0.05
YUA0118 YUA0119	23 21	24 22	EOH EOH	2 3	0.16 0.14	0.21	17 25	0.5 0.9	3.9 6.1	47 44	-0.05 0.05
YUA0120	21	22	EOH	2	0.14	0.21	8	0.9	5.5	75	-0.05
YUA0120	24	25	EOH	2	0.07	0.03	5	0.4	5.3	79	-0.05
YUA0122	19	20	EOH	1	0.65	0.11	8	0.4	3.7	64	-0.05
YUA0123	15	18	EOH	2	0.38	0.07	10	0.0	1.5	31	-0.05
YUA0124	12	13	EOH	2	9.76	0.12	11	2.6	4.4	70	-0.05
YUA0125	12	13	EOH	1	0.32	0.15	6	5.3	3.2	80	-0.05
YUA0126	15	16	EOH	3	0.77	0.13	20	1.4	1.3	43	-0.05
YUA0127	19	20	EOH	3	21.70	0.11	24	3.8	1.9	51	-0.05
YUA0128	50	51	EOH	2	0.11	0.07	16	0.7	1.9	63	-0.05
YUA0129	51	52	EOH	3	0.13	0.12	18	0.5	2.8	65	-0.05
YUA0130	26	27	EOH	8	0.15	0.13	13	0.9	3.4	29	-0.05
YUA0131	26	27	EOH	4	0.13	0.11	17	0.5	2.6	27	-0.05
YUA0132	25	26	EOH	4	0.27	0.10	13	0.9	2.2	22	-0.05
YUA0133	23	24	EOH	3	0.13	0.10	13	1.1	14.0	69	-0.05
YUA0134	29	30	EOH	2	0.06	0.18	4	0.8	14.4	94	-0.05
YUA0135 YUA0136	21 22	22 23	EOH EOH	4 3	0.37 0.51	0.09 0.12	7 10	0.9 1.0	7.5 6.2	72 66	-0.05 -0.05
YUA0138	25	25	EOH	3	0.51	0.12	8	0.8	4.8	48	-0.05
YUA0138	26	20	EOH	2	3.54	0.14	9	2.4	9.0	-40 91	-0.05
YUA0139	19	20	EOH	3	0.97	0.13	12	1.3	5.6	58	-0.05
YUA0140	18	19	EOH	3	0.17	0.10	11	1.0	5.6	57	-0.05
YUA0141	22	23	EOH	3	0.17	0.35	11	4.6	3.5	23	-0.05
YUA0142	23	24	EOH	5	0.15	0.33	5	1.4	4.1	16	-0.05
YUA0143	38	39	EOH	6	0.04	0.13	7	2.3	3.7	66	-0.05
YUA0144	50	51	EOH	14	0.09	0.14	28	4.5	10.5	90	-0.05
YUA0145	71	72	EOH	7	0.05	0.22	56	2.3	3.4	85	0.14
YUA0146	44	45	EOH	8	0.21	0.30	37	1.1	3.6	80	0.07
YUA0147	35	36	EOH	3	0.07	0.59	211	2.1	3.7	158	0.13
YUA0148	32	33	EOH	1	0.15	0.29	77	1.2	2.6	114	0.21
YUA0149	59	60	EOH	5	0.06	0.31	48	1.6	6.2	99	0.25
YUA0150	78	79 62	EOH	9 4	0.09	0.23	65 70	1.6	6.0 7.9	136	0.24
YUA0151 YUA0152	61 64	62 65	EOH EOH	3	0.11 0.09	0.31 0.46	70 71	1.7 1.7	7.8 3.5	141 107	0.1 0.25
YUA0152	54	55	EOH	6	0.09	0.48	88	1.7	5.0	107	0.23
YUA0154	71	72	EOH	8	0.05	0.62	46	1.5	2.8	120	0.21
YUA0155	71	72	EOH	3	0.05	0.42	63	0.7	3.6	100	0.07
YUA0156	74	75	EOH	7	0.09	0.76	84	1.8	2.5	96	0.24
YUA0157	68	69	EOH	5	0.29	1.08	98	1.5	7.3	278	0.25
YUA0158	53	54	EOH	7	0.06	0.37	65	0.9	5.2	175	0.12
YUA0159	59	60	EOH	6	0.06	0.86	56	0.7	4.6	144	0.12
YUA0160	21	24	Comp	4	0.05	0.22	23	0.7	1.0	31	-0.05
YUA0160	24	27	Comp	4	0.06	0.20	23	0.8	1.2	28	-0.05
YUA0160	27	30	Comp	2	0.23	0.41	32	0.3	2.3	40	0.14
YUA0160	30	33	Comp	1	0.13	0.71	55	0.5	6.6	87	0.38
YUA0160	33	36	Comp	2	0.09	1.20	47	0.5	5.3	104	0.3
YUA0160	36	39	Comp	2	0.05	1.61	30	0.7	6.0	93	0.33
YUA0160	39	42	Comp	5	0.05	2.82	48	0.7	6.5	153	0.37
YUA0160	42	45	Comp	7	0.07	1.50	49	0.6	4.9	141	0.32

Hole ID	From	То	Туре	Au (ppb)	Ag (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Sb (ppm)	Zn (ppm)	Te (ppm)
YUA0160	45	48	Comp	(ppb) 18	(ppm) 0.14	(ppm) 1.69	(ppm) 6]	(ppm) 1.5	(ppm) 9.1	(ppm) 119	(ppm) 0.6
YUA0160	48	51	Comp	25	0.14	7.19	99	3.0	11.1	82	2.25
YUA0160	51	54	Comp	6	0.09	3.34	75	2.0	12.6	102	1.11
YUA0160	54	57	Comp	3	0.06	0.79	44	0.8	6.8	103	0.26
YUA0160	57	60	Comp	5	0.06	0.88	36	0.9	5.5	95	0.35
YUA0160	60	63	Comp	4	0.14	5.18	60	1.5	6.1	107	1.01
YUA0160	63	66	Comp	5	0.14	3.91	71	2.6	5.3	119	1.07
YUA0160	66	69	Comp	4	0.08	2.63	83	1.7	5.4	121	0.42
YUA0160	69	72	Comp	4	0.06	2.39	77	3.5	5.1	140	0.34
YUA0160	72	74	Comp	3	0.05	0.46	94	1.0	4.8	134	0.11
YUA0160	74	75	EOH	5	0.07	1.16	76	1.1	7.3	141	0.31
YUA0161	21	24	Comp	3	0.09	0.20	20	0.6	0.8	28	0.05
YUA0161	24	27	Comp	3	0.13	0.35	24	0.8	1.6	32	0.06
YUA0161 YUA0161	27 30	30 33	Comp	3 1	0.20 0.21	0.65 1.26	27 66	0.4 1.1	4.9 3.9	37 67	0.17 0.5
YUA0161 YUA0161	30	35	Comp Comp	2	0.21	0.46	73	1.1	4.3	133	0.5
YUA0161	36	38	Comp	2	0.40	0.46	68	1.2	4.3	165	0.2
YUA0161	30	42	Comp	-1	0.33	0.90	50	1.2	5.1	165	0.18
YUA0161	42	45	Comp	4	0.05	1.26	71	1.7	6.6	131	0.49
YUA0161	45	48	Comp	10	0.05	1.20	89	0.8	7.7	173	0.48
YUA0161	48	51	Comp	2	0.02	0.58	51	1.2	4.8	150	0.17
YUA0161	51	54	Comp	8	0.08	1.34	54	2.5	5.0	127	0.27
YUA0161	54	57	Comp	6	0.07	1.72	15	5.6	6.1	123	0.44
YUA0161	57	60	Comp	6	0.17	15.80	63	5.3	14.3	194	0.97
YUA0161	60	63	Comp	4	0.15	7.23	114	6.5	47.3	447	1.25
YUA0161	63	66	Comp	14	1.31	2.52	36	5.6	12.0	132	0.64
YUA0161	66	69	Comp	10	0.20	5.05	48	2.0	17.2	132	0.81
YUA0161	69	72	Comp	9	0.51	3.55	57	1.9	12.5	107	0.62
YUA0161	72	75	Comp	16	0.09	2.31	71	1.8	11.0	81	1.02
YUA0161	75	77	Comp	8	0.23	16.45	53	1.3	4.4	122	1.14
YUA0161	77	78	EOH	5	0.11	71.60	111	1.7	6.4	116	6.23
YUA0162	18	21	Comp	12	0.25	0.10	17	0.6	0.5	22	-0.05
YUA0162	21	24	Comp	13	0.08	0.32	20	0.7	0.6	27	-0.05
YUA0162	24	27	Comp	9	0.08	0.16	19	0.8	1.2	30	0.05
YUA0162	27	30	Comp	9	0.16	0.53	18	0.4	2.2	21 16	0.11
YUA0162 YUA0162	30 33	33 36	Comp	4	0.18	1.15	13 17	0.6 1.9	6.2 7.3	16	0.45 1.05
YUA0162	36	30	Comp Comp	2	0.05 0.08	1.98 2.13	17	1.9	7.5 11.0	17	1.05
YUA0162	39	42	Comp	3	0.08	7.51	20	7.4	8.1	32	3.59
YUA0162	42	45	Comp	4	0.00	2.25	13	12.2	5.9	28	0.84
YUA0162	45	48	Comp	13	0.12	11.45	18	44.3	5.3	47	2.57
YUA0162	48	51	Comp	9	0.11	8.36	22	58.4	5.9	60	2.14
YUA0162	51	54	Comp	54	0.28	14.50	21	31.4	6.4	63	11.8
YUA0162	54	57	Comp	21	0.23	3.49	28	10.6	10.1	76	1.24
YUA0162	57	60	Comp	27	1.69	7.57	55	24.6	10.8	98	2.66
YUA0162	60	63	Comp	22	2.26	12.25	44	21.6	4.9	83	6.29
YUA0162	63	66	Comp	20	1.55	9.24	29	24.8	4.6	106	1.28
YUA0162	66	69	Comp	16	0.81	5.60	30	24.8	5.7	75	0.96
YUA0162	69	72	Comp	16	0.95	3.20	17	13.7	5.1	64	0.57
YUA0162	72	74	Comp	70	1.30	4.95	11	99.7	8.6	125	0.81
YUA0162	74	75	EOH	14	0.27	1.54	7	9.9	7.7	138	0.76
YUA0163	59	60	EOH	2	0.10	0.50	70	1.0	6.1	174	0.11
YUA0164	59	60	EOH	3	0.04	0.50	56	0.5	8.9	269	0.12
YUA0165	56	57	EOH	3	0.28	0.28	40	0.5	6.7	186	0.06
YUA0166	47	48	EOH	1	0.06	0.17	35	0.4	4.6	94	-0.05
YUA0167	68	69 67	EOH	2	0.10	0.26	43	0.8	2.1	92	0.05
YUA0168 YUA0169	62 17	63 18	EOH EOH	14	0.21	2.62	99 4	1.1	7.8	199 29	0.67
YUA0169 YUA0170	17	18	EOH	2 5	0.32 0.12	1.62 0.95	4 9	0.8 0.9	3.5 2.0	29 20	-0.05 0.05
YUA0170	20	21	EOH	3	0.12	0.95	9 11	0.9	2.0	132	-0.05
YUA0172	20	21	EOH	9	0.33	0.70	6	1.0	6.8	132	-0.05
YUA0172	19	22	EOH	2	0.48	0.81	66	1.0	2.5	52	-0.05
YUA0174	41	42	EOH	5	0.20	9.50	7	2.9	6.3	84	0.15
10,017 P		14		5	0.70	5.50	,	£.2	0.0		0.10

Hole ID	From	То	Туре	Au (ppb)	Ag (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Sb (ppm)	Zn (ppm)	Te (ppm)
YUA0175	27	28	EOH	47	0.12	0.54	24	2.1	9.2	65	-0.05
YUA0176	23	24	EOH	4	0.17	0.28	12	1.5	1.6	26	-0.05
YUA0177	28	29	EOH	2	0.09	0.25	22	1.0	0.9	50	0.05
YUA0178	25	26	EOH	11	0.11	0.11	9	0.5	0.6	16	-0.05
YUA0179	34	35	EOH	21	0.04	0.27	104	0.8	9.3	155	0.17
YUA0180	35	36	EOH	2	0.05	0.17	175	0.5	8.1	154	0.36
YUA0181	24	27	Comp	1	0.06	0.10	23	0.4	1.6	15	-0.05
YUA0181	27	30	Comp	4	0.23	0.61	47	2.2	4.0	65	0.14
YUA0181	30	33	Comp	3	0.15	0.46	141	2.7	3.0	69	0.1
YUA0181	33	36	Comp	1	0.16	1.03	211	7.1	7.0	175	0.18
YUA0181	36	39	Comp	3	0.06	0.63	74	2.6	5.0	123	0.09
YUA0181	39	42	Comp	3	0.11	0.61	131	2.9	5.5	105	0.12
YUA0181	42	45	Comp	4	0.17	0.97	176	3.1	4.1	81	0.19
YUA0181	45	47	Comp	4	0.12	0.56	139	3.2	4.1	83	0.1
YUA0181	47	48	EOH	2	0.13	0.65	150	3.0	3.8	74	0.08
YUA0182	43	44	EOH	12	0.12	0.83	299	1.2	24.7	190	0.37
YUA0183	49	50	EOH	50	0.55	0.29	176	0.9	7.4	199	0.07
YUA0184	25	26	EOH	3	1.88	0.19	29	4.2	2.1	27	0.06
YUA0185	18	21	Comp	13	0.09	0.13	21	0.8	0.7	32	-0.05
YUA0185	21	24	Comp	4	0.08	0.19	22	1.2	1.5	30	0.05
YUA0185	24	27	Comp	3	0.25	3.52	45	6.6	6.8	43	0.12
YUA0185	27	30	Comp	2	0.17	3.27	117	2.2	12.9	51	0.2
YUA0185	30	33	Comp	6	1.00	2.73	353	1.6	10.5	333	0.13
YUA0185	33	36	Comp	17	1.08	1.02	288	1.2	11.8	387	0.1
YUA0185	36	39	Comp	19	0.65	0.91	236	6.5	11.7	238	0.06
YUA0185	39	42	Comp	28	0.05	1.54	233	1.3	12.1	254	0.08
YUA0185	42	44	Comp	10	0.15	0.83	153	1.0	11.9	139	-0.05
YUA0185	44	45	EOH	12	0.16	1.04	156	1.2	9.0	118	0.06
YUA0186	32	33	EOH	4	0.08	0.30	58	1.4	1.9	50	-0.05
YUA0187	77	78	EOH	2	0.16	0.44	54	1.3	7.2	120	0.12

Appendix 3: Soil sample results for Au, Sb, and As, relevant to the mineralisation style and reported in this release. Bold values are considered anomalous for the district

Sample ID	Туре	Easting (m)	Northing (m)	Height (m)	As (ppm)	Au (ppb)	Sb (ppm)
J5056	Soil	562,602	7,674,442	58	8	5	1.3
J5057	Soil	562,600	7,674,363	53	9	3	2.8
J5058	Soil	562,604	7,674,282	55	8	3	3.2
J5059	Soil	562,565	7,674,042	51	5	4	1.5
J5060	Soil	562,604	7,674,042	50	13	3	10.3
J5061	Soil	562,644	7,674,041	49	63	4	26.5
J5062	Soil	562,683	7,674,042	48	51	11	18.5
J5063	Soil	562,722	7,674,042	48	74	18	27.9
J5064	Soil	562,763	7,674,042	46	22	4	16.3
J5066	Soil	562,804	7,674,042	47	17	9	4.7
J5067	Soil	562,841	7,674,041	42	9	5	2.2
J5068	Soil	562,883	7,674,043	38	7	2	1.0
J5069	Soil	562,803	7,673,881	40	5	1	0.6
J5071	Soil	562,762	7,673,884	39	9	3	1.3
J5072	Soil	562,724	7,673,881	40	9	3	4.5
J5073	Soil	562,685	7,673,875	41	18	5	23.1
J5074	Soil	562,643	7,673,882	45	13	6	3.5
J5075	Soil	562,603	7,673,882	46	17	7	7.3
J5076	Soil	562,564	7,673,882	54	7	3	4.7
J5077	Soil	562,522	7,673,882	59	4	3	1.1
J5078	Soil	562,483	7,673,882	62	3	3	0.3
J5079	Soil	562,443	7,673,722	51	4	4	5.4
J5080	Soil	562,483	7,673,722	51	3	5	3.5
J5081	Soil	562,523	7,673,722	47	5	4	3.1
J5082	Soil	562,564	7,673,722	48	7	3	3.4
J5083	Soil	562,604	7,673,722	48	11	4	7.0
J5084	Soil	562,637	7,673,722	45	7	4	2.0
J5086	Soil	562,683	7,673,722	46	8	26	1.4

Sample ID	Туре	Easting (m)	Northing (m)	Height (m)	As (ppm)	Au (ppb)	Sb (ppm)
J5087	Soil	562,723	7,673,722	44	13	4	2.1
J5088	Soil	562,757	7.673.719	45	7	2	0.9
J5089	Soil	562,764	7,673,562	46	16	5	6.3
J5090	Soil	562,724	7,673,562	45	17	3	10.7
J5091	Soil	562,683	7,673,562	51	37	19	19.8
J5092	Soil	562,644	7,673,562	56	19	2	11.4
J5093	Soil	562,603	7,673,562	54	19	1	17.0
J5094	Soil	562,563	7,673,562	52	26	3	33.0
J5096	Soil	562,523	7,673,561	55	5	2	3.0
J5097	Soil	562,524	7,673,482	55	4	1	1.3
J5098	Soil	562,564	7,673,482	55	37	6	15.2
J5099	Soil	562,603	7,673,482	53	22	2	18.6
J5100	Soil	562,643	7,673,482	46	13	1	8.6
J5117	Soil	562,684	7,673,482	43	22	3	9.9
J5118	Soil	562,722	7,673,483	41	12	2	5.5
J5119	Soil	562,764	7,673,481	38	8	85	2.3
J5121	Soil	562,724	7,673,322	36	10	3	2.2
J5122	Soil	562,684	7,673,322	41	81	7	20.8
J5123	Soil	562,644	7,673,322	42	19	4	19.5
J5124	Soil	562,604	7,673,322	41	24	2	9.2
J5125	Soil	562,562	7,673,322	43	24	4	33.9
J5126	Soil	562,523	7,673,322	41	5	4	1.4
J5127	Soil	562,523	7,673,162	47	5	3	1.7
J5128	Soil	562,564	7,673,162	47	53	6	37.4
J5129	Soil	562,604	7,673,162	45	47	4	21.2
J5130	Soil	562,643	7,673,162	44	32	3	14.4
J5131	Soil	562,683	7,673,162	42	11	4	4.0
J5132	Soil	562,723	7,673,163	41	6	1	1.3
J5133	Soil	562,764	7,673,162	42	7	2	0.9
J5134	Soil	562,721	7,673,003	40	15	12	3.8
J5136	Soil	562,682	7,672,999	42	6	2	1.5
J5137	Soil	562,643	7,673,002	45	51	12	23.8
J5138	Soil	562,603	7,673,002	46	34	3	48.3
J5139	Soil	562,563	7,673,002	48	24	7	18.6
J5140	Soil	562,523	7,673,002	47	9	2	4.4
J5141	Soil	562,524	7,672,842	51	14	5	11.3
J5142	Soil	562,563	7,672,842	50	14	4	7.7
J5143	Soil	562,603	7,672,842	49	27	31	21.7
J5144	Soil	562,639	7,672,842	50	35	7	10.2
J5146	Soil	562,683	7,672,843	47	7	2	1.6
J5147	Soil	562,643	7,672,682	46	6	2	0.8
J5148	Soil	562,603	7,672,682	49	13	5	1.8
J5149	Soil	562,564	7,672,682	50	11	2	2.0
J5150	Soil	562,524	7,672,682	49	13	12	4.3
J5201	Soil	562,563	7,674,442	61	7	6	1.1
J5201	Soil	562,563	7,674,442	61	7	6	1.1
J5202	Soil	562,564	7,674,362	53	8	2	3.1
J5202	Soil	562,564	7,674,362	53	8	2	3.1
75007	o ''	566 567				8	2.8
J5203	Soil	562,563	7,674,282	52	7		
J5203	Soil	562,563	7,674,282	52	7	8	2.8
J5203 J5204	Soil Soil	562,563 562,602	7,674,282 7,674,203	52 50	7 7	8 3	2.8 8.2
J5203 J5204 J5204	Soil Soil Soil	562,563 562,602 562,602	7,674,282 7,674,203 7,674,203	52 50 50	7 7 7	8 3 3	2.8 8.2 8.2
J5203 J5204 J5204 J5205	Soil Soil Soil Soil	562,563 562,602 562,602 562,602	7,674,282 7,674,203 7,674,203 7,674,122	52 50 50 44	7 7 7 5	8 3 3 1	2.8 8.2 8.2 2.5
J5203 J5204 J5204 J5205 J5205 J5205	Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,602	7,674,282 7,674,203 7,674,203 7,674,122 7,674,122	52 50 50 44 44	7 7 7 5 5	8 3 3 1 1	2.8 8.2 8.2 2.5 2.5
J5203 J5204 J5204 J5205 J5205 J5205 J5206	Soil Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,602 562,644	7,674,282 7,674,203 7,674,203 7,674,122 7,674,122 7,674,122	52 50 50 44 44 44 45	7 7 7 5 5 8	8 3 1 1 2	2.8 8.2 2.5 2.5 5.5
J5203 J5204 J5204 J5205 J5205 J5206 J5206 J5206	Soil Soil Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,602 562,644 562,644	7,674,282 7,674,203 7,674,203 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122	52 50 50 44 44 45 45	7 7 5 5 8 8	8 3 1 1 2 2	2.8 8.2 2.5 2.5 5.5 5.5
J5203 J5204 J5204 J5205 J5205 J5206 J5206 J5206 J5207	Soil Soil Soil Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,644 562,644 562,644	7,674,282 7,674,203 7,674,203 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122	52 50 50 44 44 45 45 45 49	7 7 5 5 8 8 13	8 3 1 1 2 2 2 2	2.8 8.2 2.5 2.5 5.5 5.5 6.1
J5203 J5204 J5204 J5205 J5205 J5206 J5206 J5207 J5207	Soil Soil Soil Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,602 562,644 562,644 562,684 562,684	7,674,282 7,674,203 7,674,203 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122	52 50 50 44 44 45 45 45 49 49	7 7 5 5 8 8 13 13	8 3 1 1 2 2 2 2 2	2.8 8.2 2.5 2.5 5.5 5.5 6.1 6.1
J5203 J5204 J5204 J5205 J5205 J5206 J5206 J5207 J5207 J5207 J5208	Soil Soil Soil Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,602 562,604 562,644 562,644 562,684 562,684 562,684 562,724	7,674,282 7,674,203 7,674,203 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122	52 50 50 44 45 45 45 49 49 49 47	7 7 5 5 8 8 13 13 13 17	8 3 1 1 2 2 2 2 2 3	2.8 8.2 2.5 2.5 5.5 5.5 6.1 6.1 7.5
J5203 J5204 J5205 J5205 J5206 J5206 J5207 J5208 J5208	Soil Soil Soil Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,602 562,604 562,644 562,684 562,684 562,724 562,724	7,674,282 7,674,203 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122	52 50 50 44 45 45 45 49 49 49 47 47	7 7 5 5 8 8 13 13 17 17	8 3 1 2 2 2 2 3 3 3	2.8 8.2 2.5 5.5 5.5 6.1 6.1 7.5 7.5
J5203 J5204 J5205 J5205 J5206 J5206 J5207 J5208 J5208 J5209	Soil Soil Soil Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,602 562,604 562,644 562,684 562,684 562,724 562,724 562,724 562,763	7,674,282 7,674,203 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122	52 50 50 44 45 45 49 49 49 47 47 46	7 7 5 5 8 8 13 13 17 17 6	8 3 1 2 2 2 2 2 3 3 9	2.8 8.2 2.5 5.5 6.1 6.1 7.5 7.5 5.1
J5203 J5204 J5205 J5205 J5206 J5206 J5207 J5208 J5208 J5209	Soil Soil Soil Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,602 562,604 562,644 562,684 562,684 562,724 562,724 562,763	7,674,282 7,674,203 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122	52 50 50 44 45 45 49 49 49 47 47 47 46 46	7 7 5 5 8 8 13 13 17 17 6 6 6	8 3 1 2 2 2 2 3 3 9 9	2.8 8.2 2.5 5.5 5.5 6.1 6.1 7.5 7.5 5.1 5.1
J5203 J5204 J5204 J5205 J5205 J5206 J5206 J5207 J5207 J5208 J5208 J5208 J5209	Soil Soil Soil Soil Soil Soil Soil Soil	562,563 562,602 562,602 562,602 562,602 562,602 562,604 562,644 562,684 562,684 562,724 562,724 562,724 562,763	7,674,282 7,674,203 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122 7,674,122	52 50 50 44 45 45 49 49 49 47 47 46	7 7 5 5 8 8 13 13 17 17 6	8 3 1 2 2 2 2 2 3 3 9	2.8 8.2 2.5 5.5 6.1 6.1 7.5 7.5 5.1

Sample ID	Туре	Easting (m)	Northing (m)	Height (m)	As (ppm)	Au (ppb)	Sb (ppm)
J5211	Soil	562,844	7,674,122	44	6	2	1.6
J5211	Soil	562,844	7,674,122	44	6	2	1.6
J5212	Soil	562,844	7,673,962	38	6	4	0.9
J5212	Soil	562,844	7,673,962	38	6	4	0.9
J5213	Soil	562,803	7,673,962	37	14	6	1.5
J5213	Soil	562,803	7,673,962	37	14	6	1.5
J5214	Soil	562,762	7,673,962	43	15	4	5.1
J5214	Soil	562,762	7,673,962	43	15	4	5.1
J5216	Soil	562,723	7,673,962	4]	23	4	5.8
J5216	Soil	562,723	7,673,962	41	23	4	5.8
J5217	Soil	562,684	7,673,962	44	14	4	12.7
J5217	Soil	562,684	7,673,962	44	14	4	12.7
J5218	Soil	562,643	7,673,962	50	18	10	10.6
J5218	Soil	562,643	7,673,962	50	18	10	10.6
J5219	Soil	562,604	7,673,962	48	27	6	27.4
J5219	Soil	562,604	7,673,962	48	27	6	27.4
J5221	Soil	562,563	7,673,962	46	4	3	1.3
J5221	Soil	562,563	7,673,962	46	4	3	1.3
J5222	Soil	562,522	7,673,962	50	4	2	0.7
J5222	Soil	562,522	7,673,962	50	4	2	0.7
J5223	Soil	562,444	7,673,802	67	3	3	0.2
J5223	Soil	562,444	7,673,802	67	3	3	0.2
J5224	Soil	562,483	7,673,802	58	3	3	0.9
J5224	Soil	562,483	7,673,802	58	3	3	0.9
J5225	Soil	562,523	7,673,801	57	3	3	1.2
J5225	Soil	562,523	7,673,801	57	3	3	1.2
J5226	Soil	562,563	7,673,802	50	7	9	3.4
J5226	Soil	562,563	7,673,802	50	7	9	3.4
J5227	Soil	562,603	7,673,802	48	13	2	15.8
J5227	Soil	562,603	7,673,802	48	13	2	15.8
J5228	Soil	562,643	7,673,802	41	6	1	1.6
J5228	Soil	562,643	7,673,802	41	6	1	1.6
J5229	Soil	562,683	7,673,802	46	10	4	2.9
J5229	Soil	562,683	7,673,802	46	10	4	2.9
J5230	Soil	562,724	7,673,802	45	11	5	2.3
J5230	Soil	562,724	7,673,802	45	11	5	2.3
J5231	Soil	562,762	7,673,802	41	6	21	0.8
J5231	Soil	562,762	7,673,802	41	6	21	0.8
J5232	Soil	562,803	7,673,802	39	7	3	1.6
J5232	Soil	562,803	7,673,802	39	7	3	1.6
J5233	Soil	562,724	7,673,642	46	10	6	2.3
J5233	Soil	562,724	7,673,642	46	10	6	2.3
J5234	Soil	562,684	7,673,642	46	17	2	4.3
J5234	Soil	562,684	7,673,642	46	17	2	4.3
J5236	Soil	562,644	7,673,642	53	23	3	29.0
J5236	Soil	562,644	7,673,642	53	23	3	29.0
J5237	Soil	562,602	7,673,643	47	20	6	17.2
J5237	Soil	562,602	7,673,643	47	20	6	17.2
J5238	Soil	562,565	7,673,642	45	12	8	7.6
J5238	Soil	562,565	7,673,642	45	12	8	7.6
J5239	Soil	562,523	7,673,641	49	6	2	8.4
J5239	Soil	562,523	7,673,641	49	6	2	8.4
J5240	Soil	562,484	7,673,642	55	3	2	2.8
J5240	Soil	562,484	7,673,642	55	3	2	2.8
J5241	Soil	562,443	7,673,643	64	3	1	3.4
J5241	Soil	562,443	7,673,643	64	3	1	3.4
J5242	Soil	562,525	7,673,403	41	5	4	3.7
J5242	Soil	562,525	7,673,403	41	5	4	3.7
J5243	Soil	562,563	7,673,402	47	20	4	21.4
J5243	Soil	562,563	7,673,402	47	20	4	21.4
	Soil	562,604	7,673,402	47	40	3	21.9
J5244							
J5244 J5244	Soil	562,604	7,673,402	47	40	3	21.9
		562,604 562,643	7,673,402 7,673,403	47 44	40 21	3 2	21.9 17.0

Sample ID J5247	Туре	Easting (m)	Northing (m)	Height (m)	As (ppm)	Au (ppb)	Sb (ppm)
JJLT/	Soil	562,682	7,673,402	40	32	6	24.6
J5247	Soil	562,682	7,673,402	40	32	6	24.6
J5248	Soil	562,723	7,673,402	39	15	3	5.5
J5248	Soil	562,723	7,673,402	39	15	3	5.5
J5249	Soil	562,722	7,673,243	42	8	4	1.6
J5249	Soil	562,722	7,673,243	42	8	4	1.6
J5250	Soil	562,684	7,673,241	41	14	3	5.3
J5250	Soil	562,684	7,673,241	41	14	3	5.3
J5251	Soil	562.644	7,673,242	45	19	2	5.4
J5251	Soil	562,644	7,673,242	45	19	2	5.4
J5252	Soil	562,604	7,673,242	39	16	42	10.7
J5252	Soil	562.604	7,673,242	39	16	42	10.7
J5253	Soil	562,563	7,673,242	45	21	8	25.9
J5253	Soil	562,563	7,673,242	45	21	8	25.9
J5254	Soil	562,503	7,673,242	48	4	2	1.2
J5254	Soil	562,523	7,673,242	48	4	2	1.2
J5255	Soil	562,523	7,673,082	50	27	4	42.9
J5255	Soil	562,524	7,673,082	50	27	4	42.9
J5255 J5256	Soil			48	27	2	15.2
J5256 J5256		562,563	7,673,083	48 48	21	2	15.2
	Soil	562,563	7,673,083	40		6	
J5257	Soil	562,603	7,673,081		38		39.2
J5257	Soil	562,603	7,673,081	46	38	6	39.2
J5258	Soil	562,644	7,673,082	41	33	5	21.6
J5258	Soil	562,644	7,673,082	41	33	5	21.6
J5259	Soil	562,684	7,673,082	40	7	2	1.9
J5259	Soil	562,684	7,673,082	40	7	2	1.9
J5260	Soil	562,722	7,673,081	40	8	2	3.7
J5260	Soil	562,722	7,673,081	40	8	2	3.7
J5261	Soil	562,764	7,673,083	39	6	1	0.8
J5261	Soil	562,764	7,673,083	39	6	1	0.8
J5262	Soil	562,763	7,672,921	36	6	3	0.9
J5262	Soil	562,763	7,672,921	36	6	3	0.9
J5263	Soil	562,721	7,672,920	39	17	11	9.8
J5263	Soil	562,721	7,672,920	39	17	11	9.8
J5264	Soil	562,683	7,672,922	40	9	1	3.1
J5264	Soil	562,683	7,672,922	40	9	1	3.1
J5266	Soil	562,643	7,672,922	41	24	2	11.2
J5266	Soil	562,643	7,672,922	41	24	2	11.2
J5267	Soil	562,603	7,672,921	43	60	4	35.0
J5267	Soil	562,603	7,672,921	43	60	4	35.0
J5268	Soil	562,563	7,672,921	45	31	4	32.8
J5268	Soil	562,563	7,672,921	45	31	4	32.8
J5269	Soil	562,524	7,672,922	47	28	6	7.0
J5269	Soil	562,524	7,672,922	47	28	6	7.0
J5271	Soil	562,523	7,672,762	52	12	4	4.5
J5271	Soil	562,523	7,672,762	52	12	4	4.5
J5272	Soil	562,563	7,672,760	47	12	2	2.4
J5272	Soil	562,563	7,672,760	47	12	2	2.4
J5273	Soil	562,603	7,672,762	47	14	2	3.1
J5273	Soil	562,603	7,672,762	47	14	2	3.1
J5274	Soil	562,644	7,672,762	46	79	22	22.7
J5274	Soil	562,644	7,672,762	46	79	22	22.7
J5275	Soil	562,684	7,672,762	46	13	2	3.2
J5275	Soil	562,684	7,672,762	46	13	2	3.2
J5276	Soil	562,674	7,672,600	42	12	5	2.8
J5276	Soil	562,674	7,672,600	42	12	5	2.8
J5277	Soil	562,643	7,672,602	41	7	2	0.9
J5277	Soil	562,643	7,672,602	41	7	2	0.9
J5278	Soil	562,602	7,672,602	43	13	6	1.8
	Soil	562,602	7,672,602	43	13	6	1.8
	0.011	002,002					
J5278	Soil	562 564	7 677 607	46	17		14
J5278 J5279	Soil Soil	562,564	7,672,602	46 46	12	2	1.4
J5278	Soil Soil Soil	562,564 562,564 562,524	7,672,602 7,672,602 7,672,602	46 46 48	12 12 17	2 2 10	1.4 1.4 3.7

Sample ID	Туре	Easting (m)	Northing (m)	Height (m)	As (ppm)	Au (ppb)	Sb (ppm)
J5281	Soil	562,522	7,672,442	46	7	3	1.0
J5281	Soil	562,522	7,672,442	46	7	3	1.0
J5282	Soil	562,564	7,672,442	44	10	3	0.8
J5282	Soil	562,564	7,672,442	44	10	3	0.8
J5283	Soil	562,603	7,672,442	42	12	4	1.3
J5283	Soil	562,603	7,672,442	42	12	4	1.3
J5284	Soil	562,568	7,672,282	44	8	4	0.7
J5284	Soil	562,568	7,672,282	44	8	4	0.7
J5286	Soil	562,523	7,672,282	46	8	2	1.1
J5286	Soil	562,523	7,672,282	46	8	2	1.1
J5301	Soil	562,523	7,672,522	51	8	15	0.7
J5302	Soil	562,564	7,672,522	49	16	6	1.4
J5303	Soil	562,602	7,672,522	44	8	2	1.3
J5304	Soil	562,595	7,672,362	43	9	2	0.9
J5305	Soil	562,561	7,672,362	46	6	1	0.6
J5306	Soil	562,522	7,672,362	50	11	3	1.7

Appendix 4: Rock sample results for Au, Sb, and As, relevant to the mineralisation style and reported in this release. Bold values are considered anomalous for the district

Sample ID	Туре	Easting (m)	Northing (m)	Height (m)	As (ppm)	Au (ppb)	Sb (ppm)
R07957	Rock	562,577	7,672,876	50	39	3	15
R07958	Rock	562,566	7,673,302	34	156	2	2,150
R07959	Rock	562,577	7,673,302	35	168	3	673
R07960	Rock	562,595	7,673,103	46	12	1	16
R07961	Rock	562,557	7,673,094	48	273	4	710
R07962	Rock	562,529	7,673,094	46	219	4	1,650
R07963	Rock	562,618	7,673,025	46	651	11	1,230
R07964	Rock	562,564	7,673,540	47	50	4	51
R07965	Rock	562,644	7,674,051	45	1,120	4	241
R07967	Rock	562,683	7,674,027	47	12	1	101
R07968	Rock	562,788	7,674,045	50	30	1	88
R07970	Rock	562,718	7,674,051	53	240	2	226

JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Balla Balla AC samples were speared from 1 m sample piles into 3 m composites. Composite length was reduced at end of hole to accommodate a final one metre end of hole sample. Samples are approximately 2 – 3 kg, and pulverised in full Speared composite samples were analysed for gold using a 50 g fire assay. End of hole samples were analysed for gold, platinum and palladium using a 50 g PGM-ICP24 assay and for multi-elements using a 0.25 g ME-MS61 assay Sherlock Crossing rock chips samples were collected by grab sampling 1 – 3 kg of material. Sample sites were selected to be representative of the lithology sampled, and the same sampling technique was employed at each sample site where possible. Samples are pulverised in full and analysed for gold using a 50 g fire assay (Au-ICP22) and for multi-elements using a 0.25 g ME-MS61 assay Sherlock Crossing soil samples of ~200 g were collected from small pits 10 cm – 40 cm in depth and sieved to <80# mesh. A 25 g aliquot was digested via aqua regia (AuME-TL43)
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit, or other type, whether core is oriented and if so, by what method, etc). 	• Balla Balla AC drilling was completed by Wallis Drilling, using a Mantis 200 drill rig with NQ sized drill rods
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries were estimated from sample piles. Records were made of sample quality, including contamination and wetness. The rig utilises a cyclone to ensure all material is captured in metre intervals, with dust suppression to retain fines. The cyclone was regularly cleaned to minimise sample contamination No relationship between sample recovery or contamination and grade is recognised.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 AC chips were logged for qualitative and quantitative properties including interpreted lithology, alteration and mineralisation, magsus, and sample properties. Chips and pieces of core were photographed and stored for future test work. All one metre intervals are logged.

Novo Resources Corp Australian Office Level 3, 46 Ventnor Avenue, West Perth WA 6005 +61 8 6400 6100 Mailing Address PO Box 566 West Perth, WA 6872

Criteria	JORC Code explanation	Commentary
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Chips were not analysed for geotechnical or metallurgical properties, and this preliminary program will not be part of a Mineral Resource estimation Rock chip samples are geologically logged with quantitative and qualitative data collected including a description of lithology, vein type and vein densities, and alteration.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Balla Balla AC samples were speared from one metre sample piles into three metre composites. Spearing AC samples from piles on the ground is appropriate for the early exploration phase. Spearing is completed with a custom made pvc spear, held parallel to the ground to avoid contamination, and speared into the centre of the sample pile to best represent the entire metre drilled. Equal aliquots are combined into a three-metre composite for assay. Duplicate samples were collected for every 1 in 25 samples to check for repeatability. The sampling techniques and sample sizes are considered appropriate for the style of mineralisation. Rock samples are collected to best represent the material sampled across geological features.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (if lack of bias) and precision have been established. 	 AC sampling and analysis is considered appropriate for early exploration and the style of mineralisation tested. QAQC includes 2 CRM standards, 2 blanks, and 4 field duplicates per 100 samples. The rock chip sample assay methodology is considered appropriate for the style of mineralisation tested. The method includes inserting 2 CRM standards and 2 blanks per 100 samples or at least one of each per sample submission. The soil sample assay methodology has low level detection for gold and multi-elements and is considered appropriate for soil geochemistry for outcropping or near surface mineralisation. The method includes insertion of at least 2 blanks 2 CRM standards and 4 field duplicates per 100 samples. No QAQC issues were detected for Au or ME performance, with CRM performance passing review and no bias detected.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Primary data was collected in the field using Geobank for Field Teams 24.0, which was then forwarded to the database manager email for upload to the Geobank (v2025.0) database, buffered through a validation portal that ensures code and primary record compliance. Geobank is a front-end UX/UI tender software platform (developed and sold by Micromine) attached to a SQL v15.1 server. Assay data was loaded from lab certificates received from the registered laboratory by an internal database manager or external database consultant, and industry-standard audit trails and chain-of-custody was adhered to. Verification included checking the data against original logs and utilising laboratory certificates.

Criteria	JORC Code explanation	Commentary
		No adjustments of the assay data were made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All surface sample locations were recorded by hand-held GPS using the GDA 2020 zone 50 coordinate system. AC holes are surveyed at the start of hole using a handheld compass and clino on the rig mast. There are no downhole surveys completed due to the shallow nature of drilling. Topographic control at Balla Balla is from SRTM data, which is of sufficient quality for the relatively flat project terrain
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 AC holes are spaced at 50 m, on lines spaced between 640 m and 2.8 km. This spacing is not sufficient to derive any geological or grade continuity. Samples are composited to 3 m intervals. Limited rock samples taken are indicative of potential grade tenor. These do not represent or imply any continuity or scale potential. Soil samples were taken on a nominal grid of 40 m by 80 m orientated to be perpendicular to the interpreted strike of the system.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 AC drill lines were designed to be perpendicular to most structures and stratigraphy trends. AC holes were angled to the southeast, which is assuming a vertical or northwest dip to features. Drilling intersected lithological contacts and structures as anticipated, although it is at this stage unknown if other orientated structures are present. The soil sample grid was orientated to best intersect the lithological and structural trends at right angles. Rock samples were taken across features with geological data recorded to best reflect unbiased sampling of possible mineralised structures.
Sample security	• The measures taken to ensure sample security.	• All samples are stored and managed on site by internal staff. Samples are then transported by reputable companies to a registered laboratory where they are stored in a locked facility before being tracked and processed through the preparation and analysis system at the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• No audits have been undertaken.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, 	• The Balla Balla project is located on tenements E47/4703 and E47/4295. E47/4703 is held by SQM under the Harding Battery Metals JV, with Novo retaining a 25% interest in the tenement and 100% of the gold, silver, PGE,

Criteria	JORC Code explanation	Commentary
land tenure status	native title interests, historical sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	 copper, lead and zinc mineral rights. E47/4295 is held by Meentheena Gold Pty Ltd, a wholly owned subsidiary of Novo. The drilling area falls within the Kariyarra Native Title claim. Novo have a tenement wide access agreement in place with Kariyarra and completed heritage surveys to allow AC drilling. Sherlock Crossing is located on tenement E47/3825, held by Karratha Gold Pty Ltd, a wholly owned subsidiary of Novo. It falls within the Ngarluma/Yindjibarndi Native Title Claim and is managed by the Ngarluma Aboriginal Corporation. Novo have an access agreement in place with Ngarluma and have completed a heritage survey to facilitate drilling. The tenements are currently in good standing and there are no known impediments.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Balla Balla: Australia Inland Exploration and Esso Exploration conducted airborne and ground magnetics, an IP survey, diamond drilling, and thin section petrography targeting massive nickel and copper in the Sherlock Intrusion. The 1975 annual report concludes that any additional work on the tenement would only be justified if a new effective geophysical tool emerged Esso Exploration targeted the area in 1980 and 1981 with an additional aeromagnetic survey, an EM survey and RAB drilling. The RAB program consisted of 75 holes for a total of 1,535 m across the project area. All these targeted geophysical anomalies identified across the surveys conducted. Results were broadly disappointing with peak values of 101 ppm Ni, 196 ppm Cu, 127 ppm Zn, 0.5 ppm Ag, 115 ppm W, 92 ppm Pb and 0.05 ppm Au. Previous surface sampling was completed over the Ramquarry prospect in a JV between Gascoyne Gold, Dalrymple Resources and Sons of Cwalia in the 1997 to 1998 field season. 22 rock chip samples were taken, with results yielding no gold or base metal anomalies Golden State Mining in 2020 targeted VMS, shear hosted gold and to a lesser extent Ni-Cu sulphides. Results were broadly uninspiring with a peak Au value of 0.18 ppm Au Sherlock Crossing: Aarex 1997 (A53516 – A49869) collected thirty-five samples from outcrop or from the dump surrounding the main historical excavation at the Clarke Mine. The highest sample result was 84.8 g/t gold which averaged 68.5 g/t over four assays. Ascent Mining 2002 (A66185) collected twenty-one rock chip samples from Sherlock Crossing, located at the site of the historical Clarkes antimony mine, returning up to 98.8 g/t Au and 0.83% antimony Ourwest Corp 2007 (A76553) collected leven rock chip samples which gave peak results of 3.78 g/t Au and 1390 ppm Sb.

Criteria	JORC Code explanation	Commentary		
		No other known work of relevance has been undertaken by other parties.		
Geology	• Deposit type, geological setting, and style of mineralisation.	 The mineralisation style at Balla Balla is unknown. Historical work focussed largely on VMS or shear hosted mineralisation. Results in this release suggest hydrothermal alteration related to shear hosted mineralisation. Sherlock Crossing is an orogenic narrow and high-grade vein hosted system, within ultramafics. 		
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including Easting and northing of the drill hole collar, Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Collar details of all aircore holes, significant intercepts for gold mineralisation, and all multi-element data is provided for selected elements in Appendices All rock sample and soil sample results are reported in Appendices, listing all significant multi-elements. 		
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Results from the AC program are low level. No weighted average or top cuts are applied. Significant intercepts are reported to a 10 ppb cut off, including 3 m of internal waste. Higher-grade results are reported to a 30 ppb cut off, and are higher-grade for the purpose of domaining zones of mineralisation only 		
Relationship between mineralisation widths and intercept	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down 	 True orientation of possible mineralisation is currently unknown. The AC drilling was orientated to be perpendicular as best as practical to potential structures. Only down hole lengths of mineralisation are reported here. Rock sample results are indicative in nature and, whilst representatively sampling the target lithology, do not contain any width or length information 		
lengths Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 other than a qualitative description of the target. Refer to the body of the release for appropriate maps and diagrams. 		

Criteria	JORC Code explanation	Commentary
Balanced	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• Due to the large number of downhole gold assay results, not all results are reported in Appendix 2. All significant results greater than 10 ppb are listed, including any higher-grade where intersected.
reporting		• The full multi element suite comprises 50 elements. Not all elements are reported in Appendix 3, but a selection relevant to the mineralisation style is reported. For these elements, all end of hole and down hole intervals are listed.
		All rock sample and soil sample results are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• No additional data.
	• The nature and scale of planned further work (e.g., tests for	Refer to the body of the release.
Further work	 lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further hyperspectral work and geochemical analysis will be conducted on selected material for Balla Balla, to determine whether alteration can vector towards a mineralisation system. Novo intends to complete a ~ 1,000 m maiden RC drilling program at the Sherlock Crossing Au-Sb project in H2 2025.

No Section 3 or 4 report as no Mineral Resources or Ore Reserves are reported in this Appendix